精英家教网 > 高中数学 > 题目详情
6.若$|{\overrightarrow a}|=2,\overrightarrow b=({\sqrt{2},\sqrt{2}}),\overrightarrow a•({\overrightarrow b-\overrightarrow a})+2=0$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$.

分析 设向量$\overrightarrow a$与$\overrightarrow b$的夹角为θ,先求出$\overrightarrow{a}$•$\overrightarrow{b}$=4cosθ,再根据向量的数量积即可求出

解答 解:设向量$\overrightarrow a$与$\overrightarrow b$的夹角为θ,
∵|$\overrightarrow{a}$|=2,$\overrightarrow{b}$=($\sqrt{2}$,$\sqrt{2}$),
∴|$\overrightarrow{b}$|=2,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=2×2×cosθ=4cosθ,
∵$\overrightarrow{a}$($\overrightarrow{b}$-$\overrightarrow{a}$)+2=0,
∴$\overrightarrow{a}$•$\overrightarrow{b}$-|$\overrightarrow{a}$|2+2=0,
∴cosθ=$\frac{1}{2}$,
∵0≤θ≤π,
∴θ=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$.

点评 本题考查了向量的数量积的运算和向量的模因向量的夹角,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)={2^x}+\frac{1}{{{2^{x+2}}}}$,则f(x)取最小值时对应的x的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=$\frac{1}{2}$x+sin(x+φ)满足g(x)=f(x)•$\frac{{2}^{x}-1}{{2}^{x}+1}$为偶函数且g(1)<0,则函数y=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某多面体的三视图如下图所示(网格纸上小正方形的边长为1),则该多面体的表面积为(  )
A.$8+4\sqrt{2}$B.$6+4\sqrt{2}$C.12D.$8+5\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在R上的单调递增函数,则下列四个命题:①若f(x0)>x0,则f[f(x0)]>x0;②若f[f(x0)]>x0,则f(x0)>x0;③若f(x)是奇函数,则f[f(x)]也是奇函数;④若f(x)是奇函数,则f(x1)+f(x2)=0?x1+x2=0,其中正确的有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,长方形OABC中,O为坐标原点,点C在y轴上,A(4,0),曲线y2=ax(a>0)经过点B,现将一质点随机投入长方形OABC中,若质点落在图中阴影区域的概率是(  )
A.2B.1C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线y=x•ex在x=1处切线的斜率等于(  )
A.2eB.eC.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow a=(2cosθ,2sinθ),\overrightarrow b=(0,-2)$,$θ∈(\frac{π}{2},π)$,则向量夹角为(  )
A.$\frac{3π}{2}-θ$B.$θ-\frac{π}{2}$C.$\frac{π}{2}+θ$D.θ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线E:x2=4y的焦点为F,过点F的直线l交抛物线于A,B两点.
(1)若原点为O,求△OAB面积的最小值;
(2)过A,B作抛物线E的切线,分别为l1,l2,若l1与l2交于点P,当l变动时,求点P的轨迹方程.

查看答案和解析>>

同步练习册答案