| A. | $\frac{3π}{2}-θ$ | B. | $θ-\frac{π}{2}$ | C. | $\frac{π}{2}+θ$ | D. | θ |
分析 根据向量夹角的定义,结合三角函数的诱导公式进行化简即可.
解答 解:cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{-4sinθ}{2×2}$=-sinθ=cos($\frac{π}{2}$+θ)=cos(-$\frac{π}{2}$-θ)=cos(2π-$\frac{π}{2}$-θ)=cos($\frac{3π}{2}-θ$)
∵θ∈($\frac{π}{2}$,π),∴$\frac{3π}{2}-θ$∈($\frac{π}{2}$,π),
∴向量夹角为$\frac{3π}{2}-θ$,
故选:A
点评 本题主要考查向量夹角的计算,根据向量数量积的定义结合向量夹角的范围是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 已知a>1,?x>0,ax≤1 | B. | $已知0<a<1,?{x_0}<0,{a^{x_0}}≤1$ | ||
| C. | $已知0<a<1,?{x_0}≥0,{a^{x_0}}≤1$ | D. | 已知a>1,?x>0,ax≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}\sqrt{3}$ | B. | $\frac{4}{3}\sqrt{3}$ | C. | $\frac{8}{3}\sqrt{2}$ | D. | $\frac{4}{3}\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,$\frac{1}{2}$) | B. | (-$\frac{1}{2}$,1] | C. | ($\frac{1}{2}$,1] | D. | [-1,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com