精英家教网 > 高中数学 > 题目详情
3.已知$sinθ+cosθ=\frac{1}{5}$,$θ∈(\frac{π}{2},π)$,则tanθ=$-\frac{4}{3}$.

分析 利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得sinθ和cosθ 的值,可得tanθ的值.

解答 解:∵已知$sinθ+cosθ=\frac{1}{5}$,$θ∈(\frac{π}{2},π)$,
∴1+2sinθcosθ=$\frac{1}{25}$,∴sinθcosθ=-$\frac{12}{25}$,∴sinθ=$\frac{4}{5}$,cosθ=-$\frac{3}{5}$,
则tanθ=$\frac{sinθ}{cosθ}$=-$\frac{4}{3}$,
故答案为:-$\frac{4}{3}$.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.四棱锥P-ABCD,侧面PCD为边长为2的正三角形,底面ABCD为对角线互相垂直的等腰梯形,M为AD的中点,$PO=\sqrt{2}$. 
(Ⅰ)求证:PM⊥BC;
(Ⅱ)若△PAB的面积为$\frac{{\sqrt{5}}}{2}$,求三棱锥C-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直角△ABC的三边a,b,c,满足3≤a≤5≤b≤8≤c≤9,则△ABC面积的最大值是5$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴端点与焦点分别为双曲线E的焦点与实轴端点,若椭圆D与双曲线E的一个交点在直线y=2x上,则椭圆D的离心率为(  )
A.$\sqrt{2}$-1B.$\sqrt{3}$-$\sqrt{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{3-2\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=$\frac{1}{1+x}$.
(1)解不等式f(|x|)>|f(2x)|;
(2)若0<x1<1,x2=f(x1),x3=f(x2),求证:$\frac{1}{3}$|x2-x1|<|x3-x2|<$\frac{1}{2}$|x2-x1|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足约束条件$\left\{\begin{array}{l}x+y-5≤0\\ y≥x+1\\ x≥0\end{array}\right.$,则目标函数z=2x+y-1的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知全集U=Z,集合A={x|0<x<5,x∈U},B={x|x≤1,X∈U},则A∩(∁UB)={2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P在抛物线x2=4y上,F为抛物线焦点,|PF|=5,以P为圆心|PF|为半径的圆交x轴于A,B两点,则$\overrightarrow{AP}$•$\overrightarrow{AB}$=(  )
A.9B.12C.18D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow a=({1,cosx}),\overrightarrow b=({\frac{1}{3},sinx}),x∈({0,π})$,$\overrightarrow a∥\overrightarrow b$
(1)求$\frac{{sin(\frac{π}{2}+x)+cos(\frac{3π}{2}+x)}}{{cos(\frac{5π}{2}-x)+sin(\frac{7π}{2}-x)}}$的值;
(2)求sin2x+sinxcosx的值.

查看答案和解析>>

同步练习册答案