精英家教网 > 高中数学 > 题目详情
2.在等差数列{an}中,已知首项a1>0,公差d>0.若a1+a2≤10,a2+a3≥12,则-3a1+a5的最小值为13.

分析 易得a1+a2≤10,a2+a3≥12,待定系数可得-3a1+a5=-$\frac{1}{2}$(2a1+d)+$\frac{3}{2}$(2a1+3d),由不等式的性质可得.

解答 解:∵在等差数列{an}中,已知首项a1>0,公差d>0,
又a1+a2≤10,a2+a3≥12,
∴2a1+d≤10,2a1+3d≤12,
∴-3a1+a5=-2a1+4d=-x(2a1+d)+y(2a1+3d)=2(y-x)a1+(3y-x)d,
∴2(y-x)=-2,3y-x=4,解得x=$\frac{1}{2}$,y=$\frac{3}{2}$,
∴-3a1+a5=-$\frac{1}{2}$(2a1+d)+$\frac{3}{2}$(2a1+3d)≤-$\frac{1}{2}$×10+$\frac{3}{2}$×12=13.
故答案为:13.

点评 本题考查等差数列的通项公式,涉及不等式的性质和整体的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在区间[-1,3]上随机取一个数x,若x满足|x|<m的概率为0.75,则m=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),点A,B分别是左、右顶点,过右焦点F的直线MN(异于x轴)交于椭圆C于M、N两点.
(1)若椭圆C过点$({2,\frac{{4\sqrt{3}}}{3}})$,且右准线方程为x=6,求椭圆C的方程;
(2)若直线BN的斜率是直线AM斜率的2倍,求椭圆C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设F为抛物线C:y2=2px的焦点,过F且倾斜角为60°的直线交曲线C于A,B两点(B点在第一象限,A点在第四象限),O为坐标原点,过A作C的准线的垂线,垂足为M,则|OB|与|OM|的比为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{ln|x|}{x}$的图象大致形状是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知α为第二象限角,sin(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,则tanα的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{3}$C.$-\frac{4}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设$\overrightarrow a,\overrightarrow b$满足$\overrightarrow a=(1,\sqrt{3}),|\overrightarrow b|=1$且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$的值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列命题:
①函数y=cos$({x-\frac{3π}{2}})$是奇函数;
②若α、β是第一象限角且α<β,则tanα<tanβ;
③函数y=tan$({2x+\frac{π}{4}})$的图象关于点$({-\frac{3π}{8},0})$对称;
④函数y=2sin$({\frac{π}{4}-2x})$+1的单调递增区间是$[{kπ-\frac{π}{8},kπ+\frac{3π}{8}}]\;({k∈Z})$.
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若log${\;}_{{x}^{2}-\frac{1}{2}}$$\frac{1}{2}$>1,求x的取值范围.

查看答案和解析>>

同步练习册答案