精英家教网 > 高中数学 > 题目详情
10.设F为抛物线C:y2=2px的焦点,过F且倾斜角为60°的直线交曲线C于A,B两点(B点在第一象限,A点在第四象限),O为坐标原点,过A作C的准线的垂线,垂足为M,则|OB|与|OM|的比为3.

分析 求得抛物线的焦点和准线方程,设出直线AB的方程,代入抛物线方程,消去x,求得y1=-$\frac{\sqrt{3}}{3}$p,y2=$\sqrt{3}$p,运用两点的距离公式,计算即可得到结论.

解答 解:抛物线C:y2=2px的焦点F($\frac{p}{2}$,0),准线为x=-$\frac{p}{2}$,
设直线AB:y=$\sqrt{3}$(x-$\frac{p}{2}$),
联立抛物线方程$\left\{\begin{array}{l}{{y}^{2}=2px}\\{y=\sqrt{3}(x-\frac{p}{2})}\end{array}\right.$,消去x,可得$\sqrt{3}$y2-2py-$\sqrt{3}$p2=0,
设A(x1,y1),B(x2,y2),
则y1=-$\frac{\sqrt{3}}{3}$p,y2=$\sqrt{3}$p,
由M(-$\frac{p}{2}$,y1),
则|OM|=$\sqrt{(\frac{p}{2})^{2}+{y}_{1}^{2}}$=$\frac{\sqrt{21}}{6}$p,
|OB|=$\sqrt{{x}_{2}^{2}+{y}_{2}^{2}}$=$\sqrt{\frac{{y}_{2}^{4}}{4{p}^{2}}+{y}_{2}^{2}}$=$\sqrt{\frac{9{p}^{4}}{4{p}^{2}}+3{p}^{2}}$=$\frac{\sqrt{21}}{2}$p,
即有|OB|=3|OM|.
|OB|与|OM|的比为3,
故答案为:3.

点评 本题考查抛物线的方程和性质,主要考查抛物线的焦点和准线方程的运用,直线与抛物线的位置关系,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知直线l经过抛物线y2=4x的焦点F,且与抛物线交于A,B两点(点A在第一象限)若$\overrightarrow{BA}=4\overrightarrow{BF}$,则△AOB的面积为(  )
A.$\frac{8}{3}\sqrt{3}$B.$\frac{4}{3}\sqrt{3}$C.$\frac{8}{3}\sqrt{2}$D.$\frac{4}{3}\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,平面ABC⊥平面APC,AB=BC=AP=PC=$\sqrt{2}$,∠ABC=∠APC=90°.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)若点M在棱BC上,且二面角M-PA-C的余弦值为$\frac{3\sqrt{11}}{11}$,求BM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的前n项和为Sn,a4=10,S4=28,数列$\left\{{\frac{1}{{{S_n}+2}}}\right\}$的前n项和为Tn,则T2017=$\frac{2017}{4038}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=Asin(ωx+φ)(A>0,ω>0),若f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),且f(x)在区间[$\frac{π}{6}$,$\frac{π}{2}$]上单调,则f(x)的最小正周期是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,一动圆经过点($\frac{1}{2}$,0)且与直线x=-$\frac{1}{2}$相切,设该动圆圆心的轨迹方程为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)设P是曲线E上的动点,点P的横坐标为x0,点B,C在y轴上,△PBC的内切圆的方程为(x-1)2+y2=1,将|BC|表示成x0的函数,并求△PBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中,已知首项a1>0,公差d>0.若a1+a2≤10,a2+a3≥12,则-3a1+a5的最小值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知R是实数集,集合A={x|x2-x-2≤0},$B=\left\{{x|\frac{2x-1}{x-6}≥0}\right\}$,则A∩(∁RB)=(  )
A.(1,6)B.[-1,2]C.$({\frac{1}{2},6})$D.$({\frac{1}{2},2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)<0},则(  )
A.任意m∈A,都有f(m+3)>0B.任意m∈A,都有f(m+3)<0
C.存在m∈A,都有f(m+3)=0D.存在m∈A,都有f(m+3)<0

查看答案和解析>>

同步练习册答案