分析 根据对数函数的定义与性质,把不等式化为$\frac{1}{2}$<x2-$\frac{1}{2}$<1,求出解集即可.
解答 解:根据对数函数的定义与性质,
log${\;}_{{x}^{2}-\frac{1}{2}}$$\frac{1}{2}$>1可化为
$\frac{1}{2}$<x2-$\frac{1}{2}$<1,
∴$\frac{1}{4}$<x2<$\frac{1}{2}$,
解得-$\frac{\sqrt{2}}{2}$<x<-$\frac{1}{2}$或$\frac{1}{2}$<x<$\frac{\sqrt{2}}{2}$;
∴x的取值范围是(-$\frac{\sqrt{2}}{2}$,-$\frac{1}{2}$)∪($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$).
点评 本题考查了对数函数的定义与性质的应用问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 任意m∈A,都有f(m+3)>0 | B. | 任意m∈A,都有f(m+3)<0 | ||
| C. | 存在m∈A,都有f(m+3)=0 | D. | 存在m∈A,都有f(m+3)<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com