精英家教网 > 高中数学 > 题目详情
1.已知直线l:4x+3y-20=0经过双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一个焦点,且与其一条渐近线平行,则双曲线C的实轴长为(  )
A.3B.4C.6D.8

分析 由已知得a2+b2=c2=25,$\frac{b}{a}=\frac{4}{3}$,解得a=3,即双曲线C的实轴长为2a=6,

解答 解:∵双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的焦点在x轴上,直线l:4x+3y-20=0与x轴交点为(5,0).
∴a2+b2=c2=25,…①
∵直线l:4x+3y-20=0与双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线平行,∴$\frac{b}{a}=\frac{4}{3}$…②
由①②得a2=9,b2=16,即a=3,∴双曲线C的实轴长为2a=6,
故选:C.

点评 本题考查了双曲线的方程、性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.若log${\;}_{{x}^{2}-\frac{1}{2}}$$\frac{1}{2}$>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将3个小球随机地投入编号为1,2,3,4的4个小盒中(每个盒子容纳的小球的个数没有限制),则1号盒子中小球的个数ξ的期望为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xex-a(x-1)(a∈R)
(1)若函数f(x)在x=0处有极值,求a的值及f(x)的单调区间
(2)若存在实数x0∈(0,$\frac{1}{2}$),使得f(x0)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查50人,并将调查情况进行整理后制成如表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,60)
频数1010101010
赞成人数35679
(1)世界联合国卫生组织规定:[15,45)岁为青年,(45,60)为中年,根据以上统计数据填写以下2×2列联表:
青年人中年人合计
不赞成16420
赞成141630
合计302050
(2)判断能否在犯错误的概率不超过0.05的前提下,认为赞成“车柄限行”与年龄有关?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
独立检验临界值表:
P(K2≥k)0.1000.0500.0250.010
k02.7063.8415.0246.635
(3)若从年龄[15,25),[25,35)的被调查中各随机选取1人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A,B分别是椭圆 $C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的长轴与短轴的一个端点,F1,F2分别是椭圆C的左、右焦点,D椭圆上的一点,△DF1,F2的周长为$6,|{AB}|=\sqrt{7}$.
(1)求椭圆C的方程;
(2)若P是圆x2+y2=7上任一点,过点作P椭圆C的切线,切点分别为M,N,求证:PM⊥PN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆M:(x-a)2+(y-b)2=9,M在抛物线C:x2=2py(p>0)上,圆M过原点且与C的准线相切.
(Ⅰ) 求C的方程;
(Ⅱ) 点Q(0,-t)(t>0),点P(与Q不重合)在直线l:y=-t上运动,过点P作C的两条切线,切点分别为A,B.求证:∠AQO=∠BQO(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-2≤0\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为2,则$\frac{1}{a}+\frac{1}{{{b^{\;}}}}$的最小值为(  )
A.2B.$\frac{8}{3}$C.$\frac{25}{6}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=$\sqrt{3}$tan$\frac{πx}{6}$,若在区间(-2,6)内关于x的方程f(x)-ax-a=0恰有3个不同实数根,则正数a的取值范围是(  )
A.($\frac{3}{7}$,1)B.($\frac{3}{4}$,1)C.(0,$\frac{3}{7}$)D.(0,$\frac{3}{4}$)

查看答案和解析>>

同步练习册答案