精英家教网 > 高中数学 > 题目详情
11.设f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=$\sqrt{3}$tan$\frac{πx}{6}$,若在区间(-2,6)内关于x的方程f(x)-ax-a=0恰有3个不同实数根,则正数a的取值范围是(  )
A.($\frac{3}{7}$,1)B.($\frac{3}{4}$,1)C.(0,$\frac{3}{7}$)D.(0,$\frac{3}{4}$)

分析 由已知求出x∈[-2,0]的函数解析式,结合函数是周期为4的偶函数作出y=f(x)在(-2,6)内的图象,直线y=ax+a恒过定点(-1,0),数形结合得答案.

解答 解:设x∈[-2,0],则-x∈[0,2],
∴f(-x)=$\sqrt{3}tan\frac{-πx}{6}$=$-\sqrt{3}tan\frac{πx}{6}$.
∵f(x)是偶函数,∴f(x)=$-\sqrt{3}tan\frac{πx}{6}$,x∈[-2,0].
在区间(-2,6)内关于x的方程f(x)-ax-a=0恰有3个不同实数根,即f(x)=ax+a恰有3个不同实数根,
也就是函数y=f(x)的图象与y=ax+a的图象恰有3个不同的交点.
作出函数图象如图:

直线y=ax+a恒过定点(-1,0),经过两点(-1,0)、(6,3)的直线的斜率为$\frac{3-0}{6-(-1)}=\frac{3}{7}$;
经过两点(-1,0)、(2,3)的直线的斜率为$\frac{3-0}{2-(-1)}=1$.
∴若在区间(-2,6)内关于x的方程f(x)-ax-a=0恰有3个不同实数根,
则正数a的取值范围是($\frac{3}{7},1$).
故选:A.

点评 本题考查根的存在性及根的个数判断,考查数学转化思想方法与数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知直线l:4x+3y-20=0经过双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一个焦点,且与其一条渐近线平行,则双曲线C的实轴长为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列求导正确的是(  )
A.(3x2-2)'=3xB.(log2x)'=$\frac{1}{x•ln2}$C.(cosx)'=sinxD.($\frac{1}{lnx}$)'=x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?x0∈R,$\frac{2}{x_0}$+lnx0≥0”的否定是(  )
A.$?{x}∈R,\frac{2}{x}+ln{x}<0$B.$?{x}∈R,\frac{2}{x}+ln{x}≤0$
C.$?{x_0}∈R,\frac{2}{x_0}+ln{x_0}<0$D.$?{x_0}∈R,\frac{2}{x_0}+ln{x_0}≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“?x∈R,x2+x+1<0”的否定为(  )
A.?x∈R,x2+x+1≥0B.?x∉R,x2+x+1≥0
C.?x0∉R,x02+x0+1<0D.?x0∈R,x02+x0+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a=3,b=4,sinB=$\frac{1}{4}$,则sinA等于(  )
A.$\frac{3}{16}$B.$\frac{5}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设等比数列{an}中,a3=3,a4=9,若a1•a2•a3•…•an=344,则n=(  )
A.13B.12C.11D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=x3-x+3在x=1处的切线方程为2x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设P是双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1上的动点,若P到两条渐近线的距离分别为d1、d2,则d1•d2=(  )
A.3$\sqrt{2}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案