精英家教网 > 高中数学 > 题目详情
2.下列求导正确的是(  )
A.(3x2-2)'=3xB.(log2x)'=$\frac{1}{x•ln2}$C.(cosx)'=sinxD.($\frac{1}{lnx}$)'=x

分析 先根据基本导数公式和导数的运算法则求导,再判断

解答 解:(3x2-2)'=6x,(log2x)'=$\frac{1}{x•ln2}$,(cosx)'=-sinx,($\frac{1}{lnx}$)'=-$\frac{1}{xl{n}^{2}x}$,
故选:B

点评 本题考查了基本导数公式和导数的运算法则,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.将3个小球随机地投入编号为1,2,3,4的4个小盒中(每个盒子容纳的小球的个数没有限制),则1号盒子中小球的个数ξ的期望为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆M:(x-a)2+(y-b)2=9,M在抛物线C:x2=2py(p>0)上,圆M过原点且与C的准线相切.
(Ⅰ) 求C的方程;
(Ⅱ) 点Q(0,-t)(t>0),点P(与Q不重合)在直线l:y=-t上运动,过点P作C的两条切线,切点分别为A,B.求证:∠AQO=∠BQO(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-2≤0\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为2,则$\frac{1}{a}+\frac{1}{{{b^{\;}}}}$的最小值为(  )
A.2B.$\frac{8}{3}$C.$\frac{25}{6}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=lnx-x2+x.
(I)求f(x)的单调区间;
(II)求f(x)在区间[$\frac{1}{2}$,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果c<b<a,且ac<0,那么下列不等式中:①ab>ac;②c(b-a)>0;③cb2<ab2;④ac(a-c)<0,
不一定成立的是③(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数$f(x)=2{sin^2}x+2\sqrt{3}sinx•cosx+1\;(x∈R)$的值域,最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=$\sqrt{3}$tan$\frac{πx}{6}$,若在区间(-2,6)内关于x的方程f(x)-ax-a=0恰有3个不同实数根,则正数a的取值范围是(  )
A.($\frac{3}{7}$,1)B.($\frac{3}{4}$,1)C.(0,$\frac{3}{7}$)D.(0,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校高一(1)、(2)两个班联合开展“诗词大会进校园,国学经典润心田”古诗词竞赛主题班会活动,主持人从这两个班分别随机选出20名同学进行当场测试,他们的测试成绩按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分组,分组用频率分布直方图与茎叶统计如下(单位:分)
(1)班20名同学成绩频率分布直方图

(2)班20名同学成绩茎叶图
45
52
64 5 6 8
70 5 5 8 8 8 8 9
8005 5
945
(Ⅰ)分別计算两个班这20名同学的测试成绩在[80,90)的频率,并补全频率分布直方图;
(Ⅱ)从(2)班参加测试的不低于80分的同学中随机选取两人,求这两人中至少有1人的成绩在90分以上的概率;
(III )运用所学统计知识分析比较两个班学生的古诗词水平.

查看答案和解析>>

同步练习册答案