精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=lnx-x2+x.
(I)求f(x)的单调区间;
(II)求f(x)在区间[$\frac{1}{2}$,e]上的最大值.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)求出函数的单调区间,得到函数的最大值和最小值即可.

解答 解:(I)因为f(x)=lnx-x2+x其中x>0,
所以f'(x)=$\frac{1}{x}$-2x+1=$\frac{(x-1)(2x+1)}{x}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
所以f(x)的增区间为(0,1),减区间为(1,+∞).
(II)由(I)f(x)在[$\frac{1}{2}$,1]单调递增,在[1,e]上单调递减,
∴f(x)max=f(1)=0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.等差数列{an}的前n项的和为Sn,且a6与a2012是方程x2-20x+36=0的两根,则$\frac{{S}_{2017}}{2017}$+a1009=(  )
A.10B.15C.20D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a=log23,b=log47,$c={0.3^{-\frac{3}{2}}}$,则a,b,c的大小关系为(  )
A.b>a>cB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知经销某种商品的电商在任何一个销售季度内,每售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了130吨该商品.现以x(单位:吨,100≤x≤150)表示下一个销售季度的市场需求量,T(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
(Ⅰ)根据频率分布直方图,估计一个销售季度内市场需求量x的平均数与中位数的大小;
(Ⅱ)根据直方图估计利润T不少于57万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.方程x2=xsinx+cosx的实数解个数是(  )
A.3B.0C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列求导正确的是(  )
A.(3x2-2)'=3xB.(log2x)'=$\frac{1}{x•ln2}$C.(cosx)'=sinxD.($\frac{1}{lnx}$)'=x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设随机变量X~B(2,p),随机变量Y~B(3,p),若$p(X≥1)=\frac{5}{9}$,则E(3Y+1)(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“?x∈R,x2+x+1<0”的否定为(  )
A.?x∈R,x2+x+1≥0B.?x∉R,x2+x+1≥0
C.?x0∉R,x02+x0+1<0D.?x0∈R,x02+x0+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为响应国建“精准扶贫,产业扶贫”的战略,某市面向全国征召《扶贫政策》义务宣传志愿者,从年龄在[20,45]的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示
(1)求图中x的值
(2)在抽出的100名志愿者中按年龄采取分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为Y,求Y的分布列及数学期望.

查看答案和解析>>

同步练习册答案