精英家教网 > 高中数学 > 题目详情
6.命题“?x∈R,x2+x+1<0”的否定为(  )
A.?x∈R,x2+x+1≥0B.?x∉R,x2+x+1≥0
C.?x0∉R,x02+x0+1<0D.?x0∈R,x02+x0+1≥0

分析 利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以命题“?x∈R,x2+x+1<0”的否定为:?x0∈R,x02+x0+1≥0.
故选:D.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,考查转化能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查50人,并将调查情况进行整理后制成如表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,60)
频数1010101010
赞成人数35679
(1)世界联合国卫生组织规定:[15,45)岁为青年,(45,60)为中年,根据以上统计数据填写以下2×2列联表:
青年人中年人合计
不赞成16420
赞成141630
合计302050
(2)判断能否在犯错误的概率不超过0.05的前提下,认为赞成“车柄限行”与年龄有关?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
独立检验临界值表:
P(K2≥k)0.1000.0500.0250.010
k02.7063.8415.0246.635
(3)若从年龄[15,25),[25,35)的被调查中各随机选取1人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=lnx-x2+x.
(I)求f(x)的单调区间;
(II)求f(x)在区间[$\frac{1}{2}$,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数$f(x)=2{sin^2}x+2\sqrt{3}sinx•cosx+1\;(x∈R)$的值域,最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a∈{-2,0,1,3,4},b∈{1,2},则函数f(x)=(a2-2)x+b为增函数的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=$\sqrt{3}$tan$\frac{πx}{6}$,若在区间(-2,6)内关于x的方程f(x)-ax-a=0恰有3个不同实数根,则正数a的取值范围是(  )
A.($\frac{3}{7}$,1)B.($\frac{3}{4}$,1)C.(0,$\frac{3}{7}$)D.(0,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\left\{{\sqrt{a_n}}\right\}$是等比数列,a1=1,a2=2,则{an}的前5项和为(  )
A.31B.30C.$31\sqrt{2}$D.$30\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要得到函数y=cos(2x+$\frac{π}{3}$)的图象,只需将函数y=cos2x的图象(  )
A.向左平行移动$\frac{π}{3}$个单位长度B.向右平行移动$\frac{π}{3}$个单位长度
C.向左平行移动$\frac{π}{6}$个单位长度D.向右平行移动$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=logax,g(x)=loga(2x+t-2),其中a>0且a≠1,t∈R.
(1)若0<a<1,且x∈[$\frac{1}{4}$,2]时,有2f(x)≥g(x)恒成立,求实数t的取值范围;
(2)若t=4,且x∈[$\frac{1}{4}$,2]时,F(x)=2g(x)-f(x)的最小值是-2,求实数a的值.

查看答案和解析>>

同步练习册答案