精英家教网 > 高中数学 > 题目详情
18.已知$\left\{{\sqrt{a_n}}\right\}$是等比数列,a1=1,a2=2,则{an}的前5项和为(  )
A.31B.30C.$31\sqrt{2}$D.$30\sqrt{2}$

分析 根据题意求出∴an=2n-1,再根据前n项和公式计算即可

解答 解∵$\left\{{\sqrt{a_n}}\right\}$是等比数列,a1=1,a2=2,
∴q=$\frac{\sqrt{{a}_{2}}}{\sqrt{{a}_{1}}}$=$\sqrt{2}$,
∴$\sqrt{{a}_{n}}$=1×($\sqrt{2}$)n-1
∴an=2n-1
∴{an}的前5项和为$\frac{1-{2}^{5}}{1-2}$=31,
故选:A.

点评 本题考查了等比数列的通项公式和求和公式,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知a=log23,b=log47,$c={0.3^{-\frac{3}{2}}}$,则a,b,c的大小关系为(  )
A.b>a>cB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设随机变量X~B(2,p),随机变量Y~B(3,p),若$p(X≥1)=\frac{5}{9}$,则E(3Y+1)(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“?x∈R,x2+x+1<0”的否定为(  )
A.?x∈R,x2+x+1≥0B.?x∉R,x2+x+1≥0
C.?x0∉R,x02+x0+1<0D.?x0∈R,x02+x0+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若tanα=-$\frac{1}{3}$,求$\begin{array}{l}(1)\frac{{2sin({π-α})+cosα}}{{sinα+sin({\frac{π}{2}+α})}};(2)sin2α.\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设等比数列{an}中,a3=3,a4=9,若a1•a2•a3•…•an=344,则n=(  )
A.13B.12C.11D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若在甲袋内装有8个白球,4个红球,在乙袋内装有6个白球,6个红球,今从两袋里任意取出1个球,设取出的白球个数为ξ,则下列概率中等于$\frac{{C}_{8}^{1}{C}_{6}^{1}+{C}_{4}^{1}{C}_{6}^{1}}{{C}_{12}^{1}{C}_{12}^{1}}$ 的是(  )
A.P(ξ=0)B.P(ξ≤2)C.P(ξ=1)D.P(ξ=2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为响应国建“精准扶贫,产业扶贫”的战略,某市面向全国征召《扶贫政策》义务宣传志愿者,从年龄在[20,45]的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示
(1)求图中x的值
(2)在抽出的100名志愿者中按年龄采取分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为Y,求Y的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].则这200名学生中每周的自习时间不低于25小时的人数为(  )
A.30B.60C.80D.120

查看答案和解析>>

同步练习册答案