精英家教网 > 高中数学 > 题目详情
7.如果c<b<a,且ac<0,那么下列不等式中:①ab>ac;②c(b-a)>0;③cb2<ab2;④ac(a-c)<0,
不一定成立的是③(填序号).

分析 由题意可得a>0,c<0,应用不等式的基本性质判断即可.

解答 解:由c<b<a,且ac<0,可得a>0,c<0,
故①、②、④一定成立,但③不一定成立,
如当b=0时,不等式不成立,
故答案为:③.

点评 本题考查不等式的性质,不等式比较大小的方法,判断a>0,c<0是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在△ABC中,角A,B,C的对边分别为a,b,c,a2+c2-b2=ac,b=$\sqrt{3}$,则2a+c的取值范围是($\sqrt{3}$,2$\sqrt{7}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点P为棱长等于2的正方体ABCD-A1B1C1D1内部一动点,且$|{\overrightarrow{PA}}|=2$,则$\overrightarrow{P{C_1}}•\overrightarrow{P{D_1}}$的值达到最小时,$\overrightarrow{P{C_1}}$与$\overrightarrow{P{D_1}}$夹角大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知Sn=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$,n∈N*,利用数学归纳法证明不等式Sn>$\frac{13}{24}$的过程中,从n=k到n=k+l(k∈N*)时,不等式的左边Sk+1=Sk+$\frac{1}{2k+1}$-$\frac{1}{2k+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列求导正确的是(  )
A.(3x2-2)'=3xB.(log2x)'=$\frac{1}{x•ln2}$C.(cosx)'=sinxD.($\frac{1}{lnx}$)'=x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2x+$\frac{1}{x}$-alnx,(a∈R).
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)设g(x)=f(x)-x-$\frac{2}{x}$+2alnx,且g(x)有两个极值点x1,x2,其中x1<x2,若g(x1)-g(x2)>t恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?x0∈R,$\frac{2}{x_0}$+lnx0≥0”的否定是(  )
A.$?{x}∈R,\frac{2}{x}+ln{x}<0$B.$?{x}∈R,\frac{2}{x}+ln{x}≤0$
C.$?{x_0}∈R,\frac{2}{x_0}+ln{x_0}<0$D.$?{x_0}∈R,\frac{2}{x_0}+ln{x_0}≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a=3,b=4,sinB=$\frac{1}{4}$,则sinA等于(  )
A.$\frac{3}{16}$B.$\frac{5}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:x2=2y的焦点为F,过抛物线上一点M作抛物线C的切线l,l交y轴于点N.
(1)判断△MFN的形状;
(2)若A,B两点在抛物线C上,点D(1,1)满足$\overrightarrow{AD}$+$\overrightarrow{BD}$=$\overrightarrow{0}$,若抛物线C上存在异于A,B的点E,使得经过A,B,E三点的圆与抛物线在点E处的有相同的切线,求点E的坐标.

查看答案和解析>>

同步练习册答案