精英家教网 > 高中数学 > 题目详情
16.在△ABC中,a=3,b=4,sinB=$\frac{1}{4}$,则sinA等于(  )
A.$\frac{3}{16}$B.$\frac{5}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

分析 由已知利用正弦定理即可计算求值得解.

解答 解:∵a=3,b=4,sinB=$\frac{1}{4}$,
∴由正弦定理可得:sinA=$\frac{a•sinB}{b}$=$\frac{3×\frac{1}{4}}{4}$=$\frac{3}{16}$.
故选:A.

点评 本题主要考查了正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知A,B分别是椭圆 $C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的长轴与短轴的一个端点,F1,F2分别是椭圆C的左、右焦点,D椭圆上的一点,△DF1,F2的周长为$6,|{AB}|=\sqrt{7}$.
(1)求椭圆C的方程;
(2)若P是圆x2+y2=7上任一点,过点作P椭圆C的切线,切点分别为M,N,求证:PM⊥PN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果c<b<a,且ac<0,那么下列不等式中:①ab>ac;②c(b-a)>0;③cb2<ab2;④ac(a-c)<0,
不一定成立的是③(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=sinx-cosx+x+1在$[{\frac{3π}{4},\frac{7π}{4}}]$上的最大值为π+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=$\sqrt{3}$tan$\frac{πx}{6}$,若在区间(-2,6)内关于x的方程f(x)-ax-a=0恰有3个不同实数根,则正数a的取值范围是(  )
A.($\frac{3}{7}$,1)B.($\frac{3}{4}$,1)C.(0,$\frac{3}{7}$)D.(0,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,若an+1=an-1,a1=4,则S6等于(  )
A.25B.20C.15D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}是等比数列,且a2•a5=$\frac{32}{9},{a_1}+{a_6}$=11.
(1)求数列{an}的通项公式;
(2)若数列{an}的前n项和为Sn,且Sn=21,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:x2=2py(p>0)与圆O:x2+y2=8在第一象限内的交点为M,抛物线C与圆O在点M处的切线斜率分别为k1,k2,且k1+k2=1.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设抛物线C在点M处的切线为l,过圆O上任意一点P作与l夹角为45°的直线,交l于A点,求|PA|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)是定义在R上的函数,f(x)=$\frac{1}{3}$x3+ax(a∈R),且曲线f(x)在x=$\frac{1}{2}$处的切线与直线y=-$\frac{3}{4}$x-1平行.
(1)求a的值.
(2)若函数y=f(x)-m在区间[-3,$\sqrt{3}$]上有三个零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案