精英家教网 > 高中数学 > 题目详情
5.已知抛物线C:x2=2py(p>0)与圆O:x2+y2=8在第一象限内的交点为M,抛物线C与圆O在点M处的切线斜率分别为k1,k2,且k1+k2=1.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设抛物线C在点M处的切线为l,过圆O上任意一点P作与l夹角为45°的直线,交l于A点,求|PA|的最大值.

分析 (Ⅰ)设M点坐标,根据导数几何意义,求得切线斜率,列方程即可求得p的值,即可求得抛物线C的方程;
(Ⅱ)由(Ⅰ)直线l的方程2x-y-2=0,则丨PA丨=$\sqrt{2}$d,dmax=$\frac{2}{\sqrt{5}}$+2$\sqrt{2}$,即可求得|PA|的最大值.

解答 解:(Ⅰ)设M(x0,y0),x0>0,y0>0,
由y=$\frac{{x}^{2}}{2p}$,y′=$\frac{x}{p}$,
故k1=$\frac{{x}_{0}}{p}$,由k2=-$\frac{{x}_{0}}{{y}_{0}}$,k1+k2=1,
$\left\{\begin{array}{l}{\frac{{x}_{0}}{p}-\frac{{x}_{0}}{{y}_{0}}=1}\\{{x}_{0}^{2}=2p{y}_{0}}\\{{x}_{0}^{2}+{y}_{0}^{2}=8}\end{array}\right.$,解得:$\left\{\begin{array}{l}{p=1}\\{{x}_{0}={y}_{0}=2}\end{array}\right.$,
∴抛物线C的方程为x2=2y;
(Ⅱ)由(Ⅰ)可得直线l的方程2x-y-2=0,
设点P到直线l的距离d,则丨PA丨=$\frac{d}{sin45°}$=$\sqrt{2}$d,
dmax=$\frac{2}{\sqrt{5}}$+2$\sqrt{2}$,
∴|PA|的最大值$\sqrt{2}$($\frac{2}{\sqrt{5}}$+2$\sqrt{2}$)=$\frac{2\sqrt{10}}{5}$+4.

点评 本题考查直线与抛物线的位置关系,导数的几何意义,利用导数求曲线的切线方程,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知Sn=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$,n∈N*,利用数学归纳法证明不等式Sn>$\frac{13}{24}$的过程中,从n=k到n=k+l(k∈N*)时,不等式的左边Sk+1=Sk+$\frac{1}{2k+1}$-$\frac{1}{2k+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a=3,b=4,sinB=$\frac{1}{4}$,则sinA等于(  )
A.$\frac{3}{16}$B.$\frac{5}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设z1=3-4i,z2=-2+3i,则z1-z2在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=x3-x+3在x=1处的切线方程为2x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{a}{3}{x^3}$+$\frac{1}{2}$(1-a2)x2-ax,其中a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为8x+y-2=0,求a的值;
(2)当a≠0时,求函数f(x)(x>0)的单调区间与极值;
(3)若a=1,存在实数m,使得方程f(x)=m恰好有三个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:x2=2y的焦点为F,过抛物线上一点M作抛物线C的切线l,l交y轴于点N.
(1)判断△MFN的形状;
(2)若A,B两点在抛物线C上,点D(1,1)满足$\overrightarrow{AD}$+$\overrightarrow{BD}$=$\overrightarrow{0}$,若抛物线C上存在异于A,B的点E,使得经过A,B,E三点的圆与抛物线在点E处的有相同的切线,求点E的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的偶函数,且在(-∞,0)上单调递增,若实数a满足f(2|a-1|)>f(4),则a的取值范围是(  )
A.(-∞,-1)B.(-∞,1)∪(3,+∞)C.(-1,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个盒子中有大小,形状完全相同,且编号分别为1,2的两个小球,从中有放回地先后摸两次,每次摸一球,设摸到的小球编号之和为ξ,则P(ξ=2)=$\frac{1}{4}$,D(ξ)=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案