精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=xex-a(x-1)(a∈R)
(1)若函数f(x)在x=0处有极值,求a的值及f(x)的单调区间
(2)若存在实数x0∈(0,$\frac{1}{2}$),使得f(x0)<0,求实数a的取值范围.

分析 (1)求出函数的导数,求出a的值,解关于导函数的不等式,求出函数的单调区间即可;
(2)问题转化为a<$\frac{{xe}^{x}}{x-1}$在x∈(0,$\frac{1}{2}$)上有解,设h(x)=$\frac{{xe}^{x}}{x-1}$,x∈(0,$\frac{1}{2}$),根据函数的单调性求出a的范围即可.

解答 解:(1)f′(x)=(x+1)ex-a,
由f′(0)=0,解得:a=1,
故f′(x)=(x+1)ex-1,
令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,
故f(x)在(-∞,0)递减,在(0,+∞)递增;
(2)若f(x)<0在x∈(0,$\frac{1}{2}$)上有解,
即xex<a(x-1),a<$\frac{{xe}^{x}}{x-1}$在x∈(0,$\frac{1}{2}$)上有解,
设h(x)=$\frac{{xe}^{x}}{x-1}$,x∈(0,$\frac{1}{2}$),
则h′(x)=$\frac{{e}^{x}{(x}^{2}-x-1)}{{(x-1)}^{2}}$<0,
故h(x)在(0,$\frac{1}{2}$)递减,
h(x)在(0,$\frac{1}{2}$)的值域是(-$\sqrt{e}$,0),
故a<h(0)=0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)<0},则(  )
A.任意m∈A,都有f(m+3)>0B.任意m∈A,都有f(m+3)<0
C.存在m∈A,都有f(m+3)=0D.存在m∈A,都有f(m+3)<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线${x^2}-\frac{y^2}{3}=1$,过P(2,0)且倾斜角为30°的直线l与双曲线相交于A,B两点
(1)写出直线l的参数方程.
(2)求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,角A,B,C的对边分别为a,b,c,a2+c2-b2=ac,b=$\sqrt{3}$,则2a+c的取值范围是($\sqrt{3}$,2$\sqrt{7}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.阅读如图的程序框图,运行相应的程序,则输出的S值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.${({xy-\frac{1}{x}})^8}$的二项式中不含x的项的系数为70.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:4x+3y-20=0经过双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一个焦点,且与其一条渐近线平行,则双曲线C的实轴长为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点P为棱长等于2的正方体ABCD-A1B1C1D1内部一动点,且$|{\overrightarrow{PA}}|=2$,则$\overrightarrow{P{C_1}}•\overrightarrow{P{D_1}}$的值达到最小时,$\overrightarrow{P{C_1}}$与$\overrightarrow{P{D_1}}$夹角大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?x0∈R,$\frac{2}{x_0}$+lnx0≥0”的否定是(  )
A.$?{x}∈R,\frac{2}{x}+ln{x}<0$B.$?{x}∈R,\frac{2}{x}+ln{x}≤0$
C.$?{x_0}∈R,\frac{2}{x_0}+ln{x_0}<0$D.$?{x_0}∈R,\frac{2}{x_0}+ln{x_0}≤0$

查看答案和解析>>

同步练习册答案