精英家教网 > 高中数学 > 题目详情
7.已知α为第二象限角,sin(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,则tanα的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{3}$C.$-\frac{4}{3}$D.-3

分析 由已知利用两角和的正弦函数公式可得sinα+cosα=$\frac{1}{5}$,两边平方,利用同角三角函数基本关系式可得12tan2α+25tanα+12=0,进而解得tanα的值.

解答 解:∵α为第二象限角,sin(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,可得:$\frac{\sqrt{2}}{2}$(sinα+cosα)=$\frac{\sqrt{2}}{10}$,可得:sinα+cosα=$\frac{1}{5}$,
∴两边平方,可得:1+2sinαcosα=$\frac{1}{25}$,
∴2sinαcosα=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{1+ta{n}^{2}α}$=-$\frac{24}{25}$,整理可得:12tan2α+25tanα+12=0,
∴解得:tanα=-$\frac{4}{3}$,或-$\frac{3}{4}$.
∵tanα=-$\frac{3}{4}$=$\frac{sinα}{cosα}$.可得:sinα=-$\frac{3}{4}$cosα,解得cosα=$\frac{4}{5}$>0,由于α为第二象限角,矛盾.故舍去.
∴tanα=-$\frac{4}{3}$.
故选:C.

点评 本题主要考查了两角和的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈(-∞,0),2x>3x;命题q:?x∈(0,$\frac{π}{2}$),sinx>x,则下列命题为真命题的是(  )
A.p∧qB.(¬p)∨qC.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的前n项和为Sn,a4=10,S4=28,数列$\left\{{\frac{1}{{{S_n}+2}}}\right\}$的前n项和为Tn,则T2017=$\frac{2017}{4038}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,一动圆经过点($\frac{1}{2}$,0)且与直线x=-$\frac{1}{2}$相切,设该动圆圆心的轨迹方程为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)设P是曲线E上的动点,点P的横坐标为x0,点B,C在y轴上,△PBC的内切圆的方程为(x-1)2+y2=1,将|BC|表示成x0的函数,并求△PBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中,已知首项a1>0,公差d>0.若a1+a2≤10,a2+a3≥12,则-3a1+a5的最小值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等比数列{an}的公比为q,前n项和为Tn.(  )
A.若q>1,则数列{Tn}单调递增B.若数列{Tn}单调递增,则q>1
C.若Tn>0,则数列{Tn}单调递增D.若数列{Tn}单调递增,则Tn>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知R是实数集,集合A={x|x2-x-2≤0},$B=\left\{{x|\frac{2x-1}{x-6}≥0}\right\}$,则A∩(∁RB)=(  )
A.(1,6)B.[-1,2]C.$({\frac{1}{2},6})$D.$({\frac{1}{2},2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设数列{an}满足${a_1}=\frac{3}{8}$,且对任意的n∈N*,满足${a_{n+2}}-{a_n}≤{3^n},{a_{n+4}}-{a_n}≥10×{3^n}$,则a2017=$\frac{{{3^{2017}}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:不等式|m-1|≤$\sqrt{{a^2}+4}$对于$a∈[{-2,\sqrt{5}}]$恒成立,q:x2+mx+m<0有解,若p∨q为真,p∧q为假,求m的取值范围.

查看答案和解析>>

同步练习册答案