精英家教网 > 高中数学 > 题目详情
1.△ABC中,角A,B,C所对的边分别为a,b,c,acosC+ccosA=2bcosB.
(1)求角B的值;
(2)若a=4,b=6,求边c的长.

分析 (1)利用已知条件以及正弦定理求出B的正弦值,然后求角B的大小;
(2)由已知利用余弦定理即可解得c的值.

解答 解:(1)由acosC+ccosA=2bcosB以及正弦定理可知,
sinAcosC+sinCcosA=2sinBcosB,
即sin(A+C)=2sinBcosB.
因为A+B+C=π,所以sin(A+C)=sinB≠0,
所以cosB=$\frac{1}{2}$.
∵B∈(0,π)
∴B=$\frac{π}{3}$.
(2)∵a=4,b=6,B=$\frac{π}{3}$.
∴由余弦定理b2=a2+c2-2accosB,可得:0=c2-4c-20,
∴解得:c=2+2$\sqrt{6}$,或2-2$\sqrt{6}$(舍去).

点评 本题考查正弦定理,余弦定理,三角形的内角和的应用,注意角的范围的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.点P在抛物线x2=4y上,F为抛物线焦点,|PF|=5,以P为圆心|PF|为半径的圆交x轴于A,B两点,则$\overrightarrow{AP}$•$\overrightarrow{AB}$=(  )
A.9B.12C.18D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow a=({1,cosx}),\overrightarrow b=({\frac{1}{3},sinx}),x∈({0,π})$,$\overrightarrow a∥\overrightarrow b$
(1)求$\frac{{sin(\frac{π}{2}+x)+cos(\frac{3π}{2}+x)}}{{cos(\frac{5π}{2}-x)+sin(\frac{7π}{2}-x)}}$的值;
(2)求sin2x+sinxcosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=Asin(ωx+φ),x∈R(其中$A>0,ω>0,0<Φ<\frac{π}{2}$)的图象与x轴的交点中,相邻的两个交点之间的距离为$\frac{π}{2}$,且图象上的一个最低点为$M(\frac{2π}{3},-2)$,则f(x)的解析式为(  )
A.$f(x)=2sin(2x+\frac{π}{6})$B.$f(x)=2cos(2x+\frac{π}{6})$C.$f(x)=sin(2x+\frac{π}{3})$D.$f(x)=cos(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设mx2-mx-1≥0的解集为∅,则实数m的取值范围是(-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若4-3a-a2i=a2+4ai,则实数a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,已知c=10,A=45°,C=30°,求b及S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证D1F⊥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的各项都是正数,a1=1,an+12=an2+$\frac{{a}_{n}}{{n}^{2}}$(n∈N*
(1)求证:$\sqrt{2+\frac{\sqrt{2}(n-2)}{2n}}$≤an<2(n≥2)
(2)求证:12(a2-a1)+22(a3-a2)+…+n2(an+1-an)>$\frac{n}{2}$-$\frac{1}{4}$(n∈N*

查看答案和解析>>

同步练习册答案