精英家教网 > 高中数学 > 题目详情

【题目】已知递减等差数列{an}满足:a1=2,a2a3=40. (Ⅰ)求数列{an}的通项公式及前n项和Sn
(Ⅱ)若递减等比数列{bn}满足:b2=a2 , b4=a4 , 求数列{bn}的通项公式.

【答案】解:(I)设{an}的公差为d,则a2=2+d,a3=2+2d, ∴(2+d)(2+2d)=40,解得:d=3或d=﹣6.
∵{an}为递减数列,∴d=﹣6.
∴an=2﹣6(n﹣1)=8﹣6n,
Sn= n=﹣3n2+5n.
(II)由(I)可知a2=﹣4,a4=﹣16.
设等比数列{bn}的公比为q,
,解得
∵{bn}为递减数列,∴
∴bn=﹣22n1=﹣2n
【解析】(I)格局等差数列的通项公式列方程组解出公差,得出通项公式,代入求和公式计算Sn;(II)根据等比数列的通项公式列方程组解出首项和公比即可得出通项公式.
【考点精析】通过灵活运用数列的前n项和,掌握数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为.

)求抽取的卡片上的数字满足的概率;

)求抽取的卡片上的数字不完全相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (x>0,e为自然对数的底数),f'(x)是f(x)的导函数. (Ⅰ)当a=2时,求证f(x)>1;
(Ⅱ)是否存在正整数a,使得f'(x)≥x2lnx对一切x>0恒成立?若存在,求出a的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,圆C的参数方程为 .再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.
(1)求圆C的极坐标方程;
(2)设圆C与直线l交于点A、B,求|MA||MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为矩形,测棱底面,点的中点,作


Ⅰ)求证:平面平面

Ⅱ)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面凸四边形中(凸四边形指没有角度数大于的四边形),.

(1)若,求

(2)已知,记四边形的面积为.

① 求的最大值;

② 若对于常数,不等式恒成立,求实数的取值范围.(直接写结果,不需要过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知等差数列{an}中,a1=1a3=﹣3

)求数列{an}的通项公式;

)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

同步练习册答案