【题目】如图,在平面凸四边形中(凸四边形指没有角度数大于的四边形),.
(1)若,,求;
(2)已知,记四边形的面积为.
① 求的最大值;
② 若对于常数,不等式恒成立,求实数的取值范围.(直接写结果,不需要过程)
【答案】(1)3;(2)①;②.
【解析】
(1)在中,利用余弦定理求得;在中利用余弦定理构造关于的方程,解方程求得结果;(2)①在和中利用余弦定理构造等量关系可得,根据三角形面积公式可得,两式平方后作和可得,当时,可求得的最大值;②由可知,根据①可知,的范围由的范围决定,求解出且,且为钝角、为锐角;根据的单调性可求得最小值,从而求得得到结果.
(1)在中,,,
由余弦定理得:
在中,,,
由余弦定理得:
即:,解得:
(2)①在和中,由余弦定理得:
整理可得:
面积:,即:
即:
当时,即,时,
四边形面积的最大值为:
②
由①知:,则需研究的范围.
当增大时,增大,从而随之增大
所以,当趋于共线时,趋于,其中钝角满足
当减小时,减小,从而随之减小
所以,当趋于共线时,趋于,其中锐角满足
令,则在上递增,在上递减
并且,,
,即
科目:高中数学 来源: 题型:
【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是各项均为正整数的等差数列,公差d∈N* , 且{an}中任意两项之和也是该数列中的一项.
(1)若a1=4,则d的取值集合为;
(2)若a1=2m(m∈N*),则d的所有可能取值的和为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知递减等差数列{an}满足:a1=2,a2a3=40. (Ⅰ)求数列{an}的通项公式及前n项和Sn;
(Ⅱ)若递减等比数列{bn}满足:b2=a2 , b4=a4 , 求数列{bn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.
(Ⅰ)求证:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)证明:直线FG与平面BCD相交.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣a2x2+ax,a∈R,且a≠0.
(1)若函数f(x)在区间[1,+∞)上是减函数,求实数a的取值范围;
(2)设函数g(x)=(3a+1)x﹣(a2+a)x2 , 当x>1时,f(x)<g(x)恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com