分析 求出双曲线的渐近线方程,将渐近线方程与椭圆的方程联立,求出两个交点的坐标;利用两点的距离公式求出|MN|.
解答 解:不妨取双曲线的渐近线的方程为y=$\frac{b}{a}$x,
与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1联立消去y得2x2=a2
解得x=±$\frac{\sqrt{2}}{2}$a代入渐近线方程得M,N两点的坐标分别为:($\frac{\sqrt{2}}{2}$a,$\frac{\sqrt{2}}{2}$b),(-$\frac{\sqrt{2}}{2}$a,-$\frac{\sqrt{2}}{2}$b),
所以|MN|=$\sqrt{(\sqrt{2}a)^{2}+(\sqrt{2}b)^{2}}$=$\sqrt{2({a}^{2}+{b}^{2})}$.
故答案为:$\sqrt{2({a}^{2}+{b}^{2})}$.
点评 本题考查双曲线的渐近线方程与双曲线的焦点位置有关、考查解决直线与圆锥曲线的位置关系问题,常将直线方程与圆锥曲线方程联立.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 4 | C. | 6 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com