精英家教网 > 高中数学 > 题目详情
若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是(  )
A、(-2,2)B、[-2,2]C、(-∞,-1)D、(1,+∞)
分析:由函数f(x)=x3-3x+a求导,求出函数的单调区间和极值,从而知道函数图象的变化趋势,要使函数f(x)=x3-3x+a有3个不同的零点,寻求实数a满足的条件,从而求得实数a的取值范围.
解答:解∵f′(x)=3x2-3=3(x+1)(x-1),
当当x<-1时,f′(x)>0;
当-1<x<1时,f′(x)<0;
当x>1时,f′(x)>0,
∴当x=-1时f(x)有极大值.
当x=1时,
f(x)有极小值,要使f(x)有3个不同的零点.
只需
f(-1)>0
f(1)<0
,解得-2<a<2.
故选A.
点评:考查利用导数研究函数的单调性和极值,函数图象的变化趋势,体现了数形结合和运动的思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x3+
1
x
,则
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3x-1,x∈[-1,l],则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3mx2+nx+m2为奇函数,则实数m的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值,最小值分别为M,m,则M+m=
-14
-14

查看答案和解析>>

同步练习册答案