精英家教网 > 高中数学 > 题目详情
7.等差数列{an}中,a2=2,数列{bn}中,bn=2${\;}^{{a}_{n}}$,b4=4b2
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若a2b1-a1b1+a3b2-a2b2+…+an+1bn-anbn≤2017,求n的最大值.

分析 (Ⅰ)设等差数列{an}的公差为d,先判断{bn}为等比数列,根据条件求出公比和公差,从而可求{an}和{bn}的通项公式;
(Ⅱ)设Tn=a2b1-a1b1+a3b2-a2b2+…+an+1bn-anbn=b1+b2+…+bn,根据等比数列的求和公式得到2n+1-2≤2017,解得即可.

解答 解:(Ⅰ)设等差数列{an}的公差为d,
∵bn=2${\;}^{{a}_{n}}$,
∴bn-1=${2}^{{a}_{n-1}}$,
∴$\frac{{b}_{n}}{{b}_{n-1}}$=${2}^{{a}_{n}-{a}_{n-1}}$=2d
∴数列{bn}为等比数列,
设公比为q,则q=2d
∵b4=4b2
∴q=2或q=-2(舍去),
∴d=1,
∴a1=a2-d=2-1=1,
∴an=n,
∴bn=2n
(Ⅱ)设Tn=a2b1-a1b1+a3b2-a2b2+…+an+1bn-anbn
=b1(a2-a1)+b2(a3-a2)+…+bn(an+1-an),
=b1+b2+…+bn
=2+22+…+2n
=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2
∵a2b1-a1b1+a3b2-a2b2+…+an+1bn-anbn≤2017,
∴2n+1-2≤2017,
∴2n+1≤2019<211
∴n+1<11,
∴n<10,
∴n的最大值9.

点评 本题考查数列的通项,考查数列的求和,确定数列中的基本量,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xe-x+(x-2)ex-a
(1)当a=0时,求f(x)的单调区间;
(2)当a>2时,若ex•f(x)≥x2-2x+1对任意x≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=x-alnx+a+\frac{b}{x}$.
(1)若曲线y=f(x)在点(1,f(1))处的切线过点(4,-2),且x=2时,y=f(x)有极值,求实数a,b的值;
(2)若函数g(x)=x•f(x)在区间$[\frac{1}{e},{e^2}]$上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某班有50名学生,一次数学考试的成绩ξ服从正态分布N(110,102),已知P(100≤ξ≤110)=0.36,估计该班学生数学成绩在120分以上的有7人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC是边长为1的等边三角形,则$(\overrightarrow{AB}-2\overrightarrow{BC})•(\overrightarrow{BC}+2\overrightarrow{CA})$=(  )
A.-2B.$-\frac{3}{2}$C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列命题正确是①③,(写出所有正确命题的序号)
①若奇函数f(x)的周期为4,则函数f(x)的图象关于(2,0)对称;
②若a∈(0,1),则a1+a<a${\;}^{1+\frac{1}{a}}$;
③函数f(x)=ln$\frac{1+x}{1-x}$是奇函数;
④存在唯一的实数a使f(x)=lg(ax+$\sqrt{{2x}^{2}+1}$)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若圆x2+y2-x+my-4=0关于直线x-y=0对称,动点P(a,b)在不等式组$\left\{\begin{array}{l}x+y-2≤0\\ x+my≥0\\ y≥0\end{array}\right.$表示的平面区域内部及边界上运动,则$z=\frac{b-2}{a-1}$的取值范围是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=(1-k)x+\frac{1}{e^x}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当k=0时,过点A(0,t)存在函数曲线f(x)的切线,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足$\left\{\begin{array}{l}x-y+1≤0\\ x>0\\ y≤2\end{array}\right.$,则$\frac{2y}{2x+1}$的最小值是$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案