精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=
(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;
(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.

【答案】
(1)解:∵f(x)>k,

>k;

整理得kx2﹣2x+6k<0,∵不等式的解集为{x|x<﹣3或x>﹣2},

∴方程kx2﹣2x+6k=0的两根是﹣3,﹣2;

由根与系数的关系知,

﹣3+(﹣2)=

即k=﹣


(2)解:∵x>0,

∴f(x)= = =

当且仅当x= 时取等号;

又∵f(x)≤t对任意x>0恒成立,

∴t≥

即t的取值范围是[ ,+∞)


【解析】(1)根据题意,把f(x)>k化为kx2﹣2x+6k<0,由不等式与对应方程的关系,利用根与系数的关系求出k的值;(2)化简f(x),利用基本不等式,求出f(x)≤t时t的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )
A.
B.
C.
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面 ,点在线段上,且 ,点在线段上,且.

(1)证明: 平面

(2)若四棱锥的体积为7,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了制定合理的节电方案,对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:百千瓦时),将数据按 分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)设该市有100万户居民,估计全市每户居民中月均用电量不低于6百千瓦时的人数及每户居民月均用电量的中位数;

(3)政府计划对月均用电量在4百千瓦时以下的用户进行奖励,月均用电量在内的用户奖励20元/月,月均用电量在内的用户奖励10元/月,月均用电量在内的用户奖励2元/月.若该市共有400万户居民,试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下几个结论:①命题“x∈R,sinx+cosx=2”的否定是“x∈R,sinx+cosx≠2”;②命题“x∈R,sinx+ ≥2”的否定是“x∈R,sinx+ <2”;③对于x∈(0, ),tanx+ ≥2;
x∈R,使sinx+cosx= .其中正确的为(
A.③
B.③④
C.②③④
D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= 的定义域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的方程为.以坐标原点为极点, 轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出曲线的参数方程和曲线的直角坐标方程;

(2)设点在曲线上,点在曲线上,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若函数的图象恰好相切与点,求实数 的值;

(2)当时, 恒成立,求实数的取值范围;

(3)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=sin2x+sin2x+3cos2x,求
(1)函数的最小值及此时的x的集合.
(2)函数的单调减区间.

查看答案和解析>>

同步练习册答案