精英家教网 > 高中数学 > 题目详情

【题目】2020110日,中国工程院院士黄旭华和中国科学院院士曾庆存荣获2019年度国家最高科学技术奖.曾庆存院士是国际数值天气预报奠基人之一,他的算法是世界数值天气预报核心技术的基础,在气象预报中,过往的统计数据至关重要,如图是根据甲地过去50年的气象记录所绘制的每年高温天数(若某天气温达到35 ℃及以上,则称之为高温天)的频率分布直方图.若某年的高温天达到15天及以上,则称该年为高温年,假设每年是否为高温年相互独立,以这50年中每年高温天数的频率作为今后每年是否为高温年的概率.

1)求今后4年中,甲地至少有3年为高温年的概率.

2)某同学在位于甲地的大学里勤工俭学,成为了校内奶茶店(消费区在户外)的店长,为了减少高温年带来的损失,该同学现在有两种方案选择:方案一:不购买遮阳伞,一旦某年为高温年,则预计当年的收入会减少6000元;方案二:购买一些遮阳伞,费用为5000元,可使用4年,一旦某年为高温年,则预计当年的收入会增加1000.4年为期,试分析该同学是否应该购买遮阳伞?

【答案】10.02722)应该购买遮阳伞

【解析】

1)先求出某年为高温年的概率为,再根据,求出今后4年中,甲地至少有3年为高温年的概率;

(2)求出两种方案损失的收入的期望,再决定是否应该购买遮阳伞.

解:(1)由题意知,某年为高温年的概率为

设今后年中高温年出现年,则

.

2)若选择方案一,不购买遮阳伞,设今后年共损失元,

若选择方案二,购买遮阳伞,设今后年共损失元,

()

,故该同学应该购买遮阳伞.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆上顶点为A,右焦点为F,直线与圆相切,其中.

1)求椭圆的方程;

2)不过点A的动直线l与椭圆C相交于PQ两点,且,证明:动直线l过定点,并且求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地一条主于道上有46盏路灯,相邻两盏路灯之间间隔30米,有关部门想在所有相邻路灯间都新添一盏,假设工人每次在两盏灯之间添新路灯是随机,并且每次添新路灯相互独立.新添路灯与左右相邻路灯的间隔都不小于10米是符合要求的,记符合要求的新添路灯数量为,则

A.30B.15C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下统计表和分布图取自《清华大学2019年毕业生就业质量报告》.

则下列选项错误的是(

A.清华大学2019年毕业生中,大多数本科生选择继续深造,大多数硕士生选择就业

B.清华大学2019年毕业生中,硕士生的就业率比本科生高

C.清华大学2019年签三方就业的毕业生中,本科生的就业城市比硕士生的就业城市分散

D.清华大学2019年签三方就业的毕业生中,留北京人数超过一半

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P为直线上任意一点,M为平面内一点,且.

(Ⅰ)求点M的轨迹E的方程;

(Ⅱ)过点P作曲线E的切线,切点分别是.,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列满的前项和为,且满足.数列满足.

1)求数列的通项公式;

2)记数列满足设数列的前项和为,数列的前项和为,试比较的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.

表中

1)根据散点图判断:哪一个模型更适合作为该图书每册的成本费y与印刷数量x的回归方程?(只要求给出判断,不必说明理由)

2)根据(1)的判断结果及表中数据,建立y关于x的回归方程(结果精确到0.01)

3)若该图书每册的定价为9.22元,则至少应该印刷多少册才能使销售利润不低于80000元?(假设能够全部售出,结果精确到1)

附:对于一组数据(ω1v1)(ω2v2)(ωnvn),其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体中,四边形为平行四边形, ,且 .

(1)求证:平面平面

(2)若,直线与平面夹角的正弦值为,求的值.

查看答案和解析>>

同步练习册答案