【题目】如图所示,正方体的棱长为1,线段上有两个动点,则下列结论中正确结论的序号是__________.
①;
②直线与平面所成角的正弦值为定值;
③当为定值,则三棱锥的体积为定值;
④异面直线所成的角的余弦值为定值.
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 +ρ2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点坐标为,且短轴一顶点满足.
(1)求椭圆的方程;
(2)过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为15°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且定义域为.
(1)求关于的方程在上的解;
(2)若在区间上单调减函数,求实数的取值范围;
(3)若关于的方程在上有两个不同的实根,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com