分析 (1)利用等比数列的通项公式即可得出.
(2)利用等差数列与等比数列的求和公式即可得出.
解答 解:(1)设等比数列{an}的公比为q>0,∵a2=4,a3+a4=24,∴a1q=4,${a}_{1}({q}^{2}+{q}^{3})$=24.
联立解得a1=q=2,∴an=2n.
(2)bn=log22n=n,
∴数列{an+bn}的前n项和Tn=(2+22+…+2n)+(1+2+…+n)=$\frac{2({2}^{n}-1)}{2-1}$+$\frac{n(n+1)}{2}$=2n+1-2+$\frac{n(n+1)}{2}$.
点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,+∞) | C. | [$\sqrt{a}$,1) | D. | (0,$\sqrt{a}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com