精英家教网 > 高中数学 > 题目详情
2.(1)求函数y=$\sqrt{sinx}$+$\sqrt{\frac{1}{2}-cosx}$的定义域.
(2)求函数y=cos2x-sinx,x∈[-$\frac{π}{4}$,$\frac{π}{4}}$]的值域.

分析 (1)由题意可知:$\left\{\begin{array}{l}{sinx≥0}\\{\frac{1}{2}-cosx≥0}\end{array}\right.$,即可求得函数的定义域;
(2)利用同角三角函数的基本关系及二次函数的性质可知y=-(sinx+$\frac{1}{2}$)2+$\frac{5}{4}$,由x的取值范围,sinx∈[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$],由二次函数的性质即可求得函数的值域.

解答 解:(1)由题意可知:$\left\{\begin{array}{l}{sinx≥0}\\{\frac{1}{2}-cosx≥0}\end{array}\right.$
解得:$\left\{\begin{array}{l}{2kπ≤x≤π+2kπ}\\{\frac{π}{3}+2kπ≤x≤\frac{5π}{3}+2kπ}\end{array}\right.$(k∈Z),
即2kπ+$\frac{π}{3}$≤x≤2kπ+π,(k∈Z),
∴函数的定义域为:{x丨2kπ+$\frac{π}{3}$≤x≤2kπ+π(k∈Z)};
(2)y=cos2x-sinx=-sin2x-sinx+1=-(sinx+$\frac{1}{2}$)2+$\frac{5}{4}$,
x∈[-$\frac{π}{4}$,$\frac{π}{4}}$],
∴sinx∈[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$],
故当sinx=-$\frac{1}{2}$时,函数取得最大值为$\frac{5}{4}$,当sinx=$\frac{\sqrt{2}}{2}$时,函数取得最小值为$\frac{2-2\sqrt{2}}{4}$.

点评 本题考查函数的定义域及值域的求法,考查同角三角函数基本关系,正弦函数图象及性质,二次函数的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别是角A,B,C的对边,且$({2b-\sqrt{2}c})cosA=\sqrt{2}acosC$.
(1)求角A的大小;
(2)若a=1,$cosB=\frac{4}{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,四边形ABCD,平面PDC⊥平面ABCD,AB=6,BC=3,点E是CD边的中点.求二面角P-AD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将所得的数据整理后,画频率分布直方图.已知图中横轴从左向右的分组为[50,75)、[75,100)、[100,125)、[125,150],纵轴前3个对应值分别为0.004、0.01、0.02,因失误第4个对应值丢失.
(Ⅰ) 已知第1小组频数为10,求参加这次测试的人数?
(Ⅱ) 求第4小组在y轴上的对应值;
(Ⅲ) 若次数在75次以上 ( 含75次 ) 为达标,试估计该年级跳绳测试达标率是多少?
(Ⅳ) 试估计这些数据的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足$\left\{{\begin{array}{l}{2x-3≥y}\\{y≤4-x}\\{x-2y-4≤0}\end{array}}\right.$,则z=2x+y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sin$\frac{x}{2}$-2cos$\frac{x}{2}$=0.
(1)求tanx的值;
(2)求$\frac{1+cos2x+sin2x}{{sin(x+\frac{π}{4})sinx}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的各项均为正数,且a2=4,a3+a4=24.
(1)求数列{an}的通项公式;
(2)设bn=log22n,求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}为等差数列,且a1=-1,a4=8.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为(  )
A.6π+12B.6π+24C.12π+12D.24π+12

查看答案和解析>>

同步练习册答案