精英家教网 > 高中数学 > 题目详情

【题目】执行下面的程序框图,如果输入的t=0.01,则输出的n=(
A.5
B.6
C.7
D.8

【答案】C
【解析】解:第一次执行循环体后,S= ,m= ,n=1,不满足退出循环的条件; 再次执行循环体后,S= ,m= ,n=2,不满足退出循环的条件;
再次执行循环体后,S= ,m= ,n=3,不满足退出循环的条件;
再次执行循环体后,S= ,m= ,n=4,不满足退出循环的条件;
再次执行循环体后,S= ,m= ,n=5,不满足退出循环的条件;
再次执行循环体后,S= ,m= ,n=6,不满足退出循环的条件;
再次执行循环体后,S= ,m= ,n=7,满足退出循环的条件;
故输出的n值为7,
故选:C
【考点精析】利用程序框图对题目进行判断即可得到答案,需要熟知程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了研究学生的数学核素养与抽象(能力指标)、推理(能力指标)、建模(能力指标)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养;若,则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:

学生编号

(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;

(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为,从数学核心素养等级不是一级的学生中任取一人,其综合指标为,记随机变量,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间四边形PABC的各边及对角线长度都相等,D、E、F、G分别是AB、BC、CA、AP的中点,下列四个结论中成立的是
①BC∥平面PDF
②DF⊥平面PAE
③平面GDF∥平面PBC
④平面PAE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分别在线段B1C1和AC上,B1E=3EC1 , AC=BC=CC1=4
(1)求证:BC⊥AC1
(2)试探究满足EF∥平面A1ABB1的点F的位置,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两定点 和一动点,给出下列结论:

①若,则点的轨迹是椭圆;

②若,则点的轨迹是双曲线;

③若,则点的轨迹是圆;

④若,则点的轨迹关于原点对称;

⑤若直线斜率之积等于,则点的轨迹是椭圆(除长轴两端点).

其中正确的是__________(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).

(1)求利润函数的函数关系式,并写出定义域;

(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在实数集上的图象是连续不断的,且对任意实数存在常数使得恒成立,则称是一个“关于函数”.现有下列“关于函数”的结论:

①常数函数是“关于函数”;

②正比例函数必是一个“关于函数”;

③“关于函数”至少有一个零点;

是一个“关于函数”.

其中正确结论的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,点 (n∈N*)均在函数y=3x-2的图象上.

(1)求数列{an}的通项公式;

(2)设bnTn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

同步练习册答案