【题目】空间四边形PABC的各边及对角线长度都相等,D、E、F、G分别是AB、BC、CA、AP的中点,下列四个结论中成立的是
①BC∥平面PDF
②DF⊥平面PAE
③平面GDF∥平面PBC
④平面PAE⊥平面ABC.
【答案】①②
【解析】解:∵空间四边形PABC的各边及对角线长度都相等,
D、E、F、G分别是AB、BC、CA、AP的中点,
∴BC∥DF,又BC不包含于平面PDF,DF平面PDF,
∴BC∥平面PDF,故①正确;
∵DE⊥BC,AE⊥BC,DE∩AE=E,
∴BC⊥平面PAE,
∵DF∥BC,∴DF⊥平面PAE,故②正确;
∵DG∥PB,GF∥PC,DG∩GF=G,DG,GF平面GDF,
∴平面GDF∥平面PBC,故③正确;
∵BC⊥平面PAE,BC平面ABC,
∴平面PAE⊥平面ABC,故④正确.
所以答案是:①②③④.
【考点精析】利用直线与平面平行的判定对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率是,且过点.直线与椭圆相交于两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的面积的最大值;
(Ⅲ)设直线, 分别与轴交于点, .判断, 大小关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.
(Ⅰ)求证:AC⊥B1C;
(Ⅱ)求证:AC1∥平面B1CD
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:在数列中,若为常数)则称为“等方差数列”,下列是对“等方差数列”的有关判断( )
①若是“等方差数列”,在数列 是等差数列;
②是“等方差数列”;
③若是“等方差数列”,则数列为常)也是“等方差数列”;
④若既是“等方差数列”又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com