已知是偶函数.
(1)求的值;
(2)证明:对任意实数,函数的图像与直线最多只有一个交点;
(3)设若函数的图像有且只有一个公共点,求实数的取值范围.
(1);(2)证明见解析;(3).
【解析】
试题分析:(1)由,并进行检验;(2)原问题等价于证明方程组
最多只有一组解,即证方程最多只有一个实根,利用反证法证明该方程不可能有两个实根,所以原命题得证;(3)问题转化为方程:只有唯一解,令,则可化为关于的方程:只有唯一正根,注意讨论二次项系数为0和不为0两种情形,当二次项系数不为0时,利用二次函数根的判定方法,最终可以得到所求实数的取值范围.
试题解析:【解析】
(1)由 经检验的满足题意; 2分
(2)证明:即证方程组最多只有一组解,
即证方程最多只有一个实根. 4分
下面用反证法证明:
假设上述方程有两个不同的解则有:
.
但时,不成立.
故假设不成立.从而结论成立. 7分
(3)问题转化为方程:只有唯一解. 9分
令,则可化为关于的方程:只有唯一正根. 10分
若,则上述方程变为,无解.故 11分
若二次方程(*)两根异号,即.此时方程(*)有唯一正根,满足条件; 12分
若二次方程(*)两根相等且为正,则. 13分
故的取值范围是:. 14分
考点:偶函数,函数与方程,二次函数.
科目:高中数学 来源:2016届广东省高一上学期期中模块考试数学试卷(解析版) 题型:解答题
设(为实常数).
(1)当时,证明:
①不是奇函数;②是上的单调递减函数.
(2)设是奇函数,求与的值.
查看答案和解析>>
科目:高中数学 来源:2016届广东省高一上学期期中模块考试数学试卷(解析版) 题型:选择题
对于函数)中任意的有如下结论:
①;
②;
③;
④;
⑤.
当时,上述结论中正确结论的个数是( )
A.2个 B.3个 C.4个 D.5个
查看答案和解析>>
科目:高中数学 来源:2016届广东实验中学高一一级模块考试数学试卷(解析版) 题型:选择题
如图将正方形沿对角线折成直二面角,有如下四个结论:
①⊥;
②△是等边三角形;
③与所成的角为60°;
④与平面所成的角为60°.
其中错误的结论是( )
A.① B.② C.③ D.④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com