分析 (1)利用等差数列关系式求出公差,然后求解数列的通项公式.
(2)化简数列的通项公式,利用裂项消项法求解数列的和即可.
解答 解:等差数列{an}中,a2=3,a5=6.
可得d=$\frac{{a}_{5}-{a}_{2}}{5-2}$=$\frac{6-3}{5-2}$=1,a1=a2-d=2.
所以an=n+1.
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$$-\frac{1}{n+2}$.
数列{bn}的前n项和Sn=$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}$=$\frac{n}{2n+4}$.
点评 本题考查数列通项公式的求法,数列求和的方法:裂项消项法的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 70 | B. | 72 | C. | 74 | D. | 76 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2017届山西临汾一中高三10月月考数学(理)试卷(解析版) 题型:解答题
选修4-4:坐标系与参数方程
在直角坐标系中, 以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系, 已知点
的极坐标为
,曲线
的参数方程为
为参数).
(1)直线
过
且与曲线
相切, 求直线
的极坐标方程;
(2)点
与点
关于
轴对称, 求曲线
上的点到点
的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源:2017届山西临汾一中高三10月月考数学(理)试卷(解析版) 题型:选择题
已知双曲线
的右焦点为
,直线
与双曲线
的渐近线在第一象限的交点为
为坐标原点,若
的面积为
,则双曲线
的离心率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com