精英家教网 > 高中数学 > 题目详情
19.如图,在四棱锥E-ABCD中,EC⊥底面ABCD,AB⊥BC,AB∥CD,AB=1,CB=CD=CE=3.
(1)若F在侧棱DE上,且DF=2FE,求证:AF∥平面BCE;
(2)求平面ADE与平面BCE所成锐二面角的余弦值.

分析 由已知可得CB,CE,CD两两垂直,可以C为原点,建立如图的空间直角坐标系C-xyz,则C(0,0,0),D(3,0,0),B(0,3,0),E(0,0,3),F(1,0,2).A(1,3,0),利用向量法求解.

解答 解:∵EC⊥底面ABCD,AB⊥BC,AB∥CD,∴CB,CE,CD两两垂直,
故以C为原点,建立如图的空间直角坐标系C-xyz,则C(0,0,0),
D(3,0,0),B(0,3,0),E(0,0,3),F(1,0,2).A(1,3,0),
(1)证明:易得平面BCE的法向量为$\overrightarrow{m}=(1,0,0)$,$\overrightarrow{AF}=(0,-3,2)$
∵$\overrightarrow{m}•\overrightarrow{AF}=1×0+0×(-3)+0×2=0$,∴$\overrightarrow{AF}⊥\overrightarrow{m}$,
又AF?平面BCE,∴AF∥平面BCE;
(2)$\overrightarrow{AD}=(2,-3,0)$,$\overrightarrow{AE}=(-1,-3,3)$
设平面ADE的法向量为$\overrightarrow{n}=(x,y,z)$
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=2x-3y=0}\\{\overrightarrow{n}•\overrightarrow{AE}=-x-3y+3z=0}\end{array}\right.$,可取$\overrightarrow{n}=(3,2,3)$
cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{3}{1×\sqrt{22}}$=$\frac{3\sqrt{22}}{22}$
∴平面ADE与平面BCE所成锐二面角的余弦值为$\frac{3\sqrt{22}}{22}$.

点评 本题考查了向量法求证线面平行、向量法求二面角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知边长为2的正方形ABCD的四个顶点在球O的球面上,二面角O-AB-C的平面角为60°,则球O的体积为(  )
A.$\frac{{20\sqrt{5}}}{3}π$B.$\frac{{64\sqrt{2}}}{3}π$C.20πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直三棱柱ABC-A1B1C1中,AB=3,BC=AA1=2,∠ABC=$\frac{π}{3}$,则异面直线B1A与C1B所成角的余弦值为(  )
A.$\frac{\sqrt{13}}{13}$B.$\frac{\sqrt{13}}{26}$C.$\frac{\sqrt{13}}{52}$D.$\frac{\sqrt{26}}{52}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为确定某零件加工时间,某工人做了四次试验,得到的数据如表:
x(小时)2345
y(个)1245
(1)若y关于x的线性回归方程为$\stackrel{∧}{y}$=1.4x+$\stackrel{∧}{a}$,求出$\stackrel{∧}{a}$的值i
(2)试预测加工8个零件需要多少时间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>b>1,0<c<1,则下列不等式正确的是(  )
A.ac<bcB.ca>cbC.logac>logbcD.logca>logcb

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知幂函数y=$({{m^2}-m-5}){x^{{m^2}-2m-6}}$,其图象过原点,则实数m的值为(  )
A.3B.2C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数 f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,则 f(f($\frac{1}{9}$))的值为(  )
A.-4B.4C.$\frac{1}{4}$D.$\frac{1}{9}{log_3}2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三棱锥S-ABC的底面△ABC为正三角形,顶点在底面上的射影为底面的中心,M,N分别是棱SC,BC的中点,且MN⊥AM,若侧棱$SA=2\sqrt{3}$,则三棱锥S-ABC的外接球的表面积是(  )
A.12πB.32πC.36πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}中,a2=3,a5=6.
(1)求数列{an}的通项公式
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案