| A. | 12π | B. | 32π | C. | 36π | D. | 48π |
分析 由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积积.
解答 解:∵M,N分别为棱SC,BC的中点,∴MN∥SB
∵三棱锥S-ABC为正棱锥,
∴SB⊥AC(对棱互相垂直),∴MN⊥AC
又∵MN⊥AM,而AM∩AC=A,
∴MN⊥平面SAC,∴SB⊥平面SAC
∴∠ASB=∠BSC=∠ASC=90°
以SA,SB,SC为从同一定点S出发的正方体三条棱,
将此三棱锥补成以正方体,则它们有相同的外接球,
正方体的对角线就是球的直径.∴2R=$\sqrt{3}$SA=6,∴R=3,
∴S=4πR2=36π.
故选:C
点评 本题考查了三棱锥的外接球的体积,考查空间想象能力.三棱锥扩展为正方体,它的对角线长就是外接球的直径,是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{10}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{3\sqrt{10}}{10}$ | D. | $\frac{\sqrt{10}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 70 | B. | 72 | C. | 74 | D. | 76 |
查看答案和解析>>
科目:高中数学 来源:2017届山西临汾一中高三10月月考数学(理)试卷(解析版) 题型:选择题
已知双曲线
的右焦点为
,直线
与双曲线
的渐近线在第一象限的交点为
为坐标原点,若
的面积为
,则双曲线
的离心率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com