精英家教网 > 高中数学 > 题目详情
12.在△ABC中,已知a=5,b=$\frac{5\sqrt{2}}{3}$,A=$\frac{π}{4}$,则cos 2B=$\frac{7}{9}$.

分析 由正弦定理求出sinB=$\frac{1}{3}$,利用cos2B=1-2sin2B能求出结果.

解答 解:∵在△ABC中,a=5,b=$\frac{5\sqrt{2}}{3}$,A=$\frac{π}{4}$,
∴由正弦定理得:$\frac{5}{sin\frac{π}{4}}=\frac{\frac{5\sqrt{2}}{3}}{sinB}$,
解得sinB=$\frac{1}{3}$,
∴cos2B=1-2sin2B=1-2×$\frac{1}{9}$=$\frac{7}{9}$.
故答案为:$\frac{7}{9}$.

点评 本题考查三角形的内角的二倍角的余弦值的求法,考查正弦定理、三角函数二倍角公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若cosx-cosy=$\frac{1}{2}$,sinx-siny=$\frac{1}{3}$,则cos(x-y)=$\frac{59}{72}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知幂函数y=$({{m^2}-m-5}){x^{{m^2}-2m-6}}$,其图象过原点,则实数m的值为(  )
A.3B.2C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点($\frac{π}{2}$,-2).
(Ⅰ)求φ的值;
(Ⅱ)若f($\frac{α}{2}$)=$\frac{6}{5}$,-$\frac{π}{2}$<α<0,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三棱锥S-ABC的底面△ABC为正三角形,顶点在底面上的射影为底面的中心,M,N分别是棱SC,BC的中点,且MN⊥AM,若侧棱$SA=2\sqrt{3}$,则三棱锥S-ABC的外接球的表面积是(  )
A.12πB.32πC.36πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.执行程序框图,如果输入x=9时,输出y=$\frac{29}{9}$,则整数a值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{\frac{a}{x}+2,x>1}\\{-{x}^{2}+2x,x≤1}\end{array}\right.$在R上单调递增,则实数a的取值范围是(  )
A.[-1,+∞)B.(-1,+∞)C.[-1,0)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知△AOB 中∠AOB=60°,OA=2,OB=5,在线段 OB 上任取一点 C,则△AOC 为锐角三角形的概率0.6.

查看答案和解析>>

科目:高中数学 来源:2017届山西临汾一中高三10月月考数学(理)试卷(解析版) 题型:选择题

若集合,集合,则( )

A. B. C. D.

查看答案和解析>>

同步练习册答案