精英家教网 > 高中数学 > 题目详情
3.若cosx-cosy=$\frac{1}{2}$,sinx-siny=$\frac{1}{3}$,则cos(x-y)=$\frac{59}{72}$.

分析 把cosx-cosy=$\frac{1}{2}$,sinx-siny=$\frac{1}{3}$这两个式子的两边分别平方后相加,得到2-2cos(x-y)=$\frac{13}{36}$,由此能求出cos(x-y).

解答 解:∵cosx-cosy=$\frac{1}{2}$,sinx-siny=$\frac{1}{3}$,
∴$\left\{\begin{array}{l}{co{s}^{2}x-2cosxcosy+co{s}^{2}y=\frac{1}{4}}\\{si{n}^{2}x-2sinxsiny+si{n}^{2}y=\frac{1}{9}}\end{array}\right.$,
∴2-2(cosxcosy+sinxsiny)=2-2cos(x-y)=$\frac{13}{36}$,
解得cos(x-y)=$\frac{59}{72}$.
故答案为:$\frac{59}{72}$.

点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意三角函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求下列函数的导数.
(])y=$\frac{{x}^{3}-1}{{x}^{2}+1}$;
(2)y=x2+sin$\frac{x}{2}$cos$\frac{x}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将7名留学归国人员分配到甲、乙两地工作,若甲地至少安排3人,乙地至少安排3人,则不同的安排方法数为(  )
A.120B.150C.70D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在正方体ABCD-A1B1C1D1中,E为线段A1C1的中点,则异面直线DE与B1C所成角的大小为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.正方体ABCD-A1B1C1D1中,N为BB1的中点,则直线AN与B1C所成角的余弦值是(  )
A.$\frac{\sqrt{5}}{10}$B.$\frac{\sqrt{5}}{5}$C.$\frac{3\sqrt{10}}{10}$D.$\frac{\sqrt{10}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知tan($\frac{π}{4}$+θ)=3,求:
(1)tanθ的值;
(2)sin2θ-2cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.社会公众人物的言行一定程度上影响着年轻人的人生观、价值观.某媒体机构为了解大学生对影视、歌星以及著名主持人方面的新闻(简称:“星闻”)的关注情况,随机调查了某大学的200位大学生,得到信息如表:
男大学生女大学生
不关注“星闻”8040
关注“星闻”4040
(Ⅰ)从所抽取的200人内关注“星闻”的大学生中,再抽取三人做进一步调查,求这三人性别不全相同的概率;
(Ⅱ)是否有95%以上的把握认为“关注‘星闻’与性别有关”,并说明理由;
(Ⅲ)把以上的频率视为概率,若从该大学随机抽取4位男大学生,设这4人中关注“星闻”的人数为ξ,求ξ的分布列及数学期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},n=a+b+c+d$.
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,多面体ABCDMN的底面ABCD是AB=2,AD=1的矩形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=2,NB=1,MB余ND交于P点,点Q在AB上,且BQ=$\frac{2}{3}$.
(1)求证:QP∥平面AMD;
(2)求三棱锥M-BCN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,已知a=5,b=$\frac{5\sqrt{2}}{3}$,A=$\frac{π}{4}$,则cos 2B=$\frac{7}{9}$.

查看答案和解析>>

同步练习册答案