精英家教网 > 高中数学 > 题目详情
设函数f(x)=(
1
4
x-(
1
2
x+1,不等式f(x)≤2a-1对x∈[-3,2]恒成立,则实数a的取值范围为______.
令t=(
1
2
)
x
,则t>0,f(x)=t2-t+1.
令g(t)=t2-t+1=(t-
1
2
)
2
+
3
4
,则当x∈[-3,2]时,
1
4
≤t≤8,函数g(t)的最大值为g(8)=57.
由题意可得,2a-1≥57,解得 a≥29,
故答案为[29,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=-x2+2ax与函数g(x)=
a
x+1
在区间[1,2]上都是减函数,则实数的取值范围为(  )
A.(0,1)∪(0,1)B.(0,1)∪(0,1]C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1-
1
x
x≥1
1
x
-10<x<1.

(I)当0<a<b,且f(a)=f(b)时,求
1
a
+
1
b
的值;
(II)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+2ax+2
(1)当a=-2时,写出函数f(x)的单调区间.
(2)求实数a的取值范围,是函数f(x)在区间[-5,5]上是单调增函数.
(3)若x∈[-5,5],求函数f(x)的最小值h(a).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)定义域为R,ab∈R总有
f(a)-f(b)
a-b
>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=
(3a-1)x+4a,x<1
-ax(x≥1)
,在(-∞,+∞)上是减函数,则a的取值范围是(  )
A.[
1
8
1
3
B.[0,
1
3
]
C.(0,
1
3
D.(-∞,
1
3
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)是单调减函数.
(1)若a>0,比较f(a+
3
a
)
与f(3)的大小;
(2)若f(|a-1|)>f(3),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
x+
1
x
,x∈[-2,-1)
-2,x∈[-1,
1
2
)
x-
1
x
,x∈[
1
2
,2]

(1)判断当x∈[-2,1)时,函数f(x)的单调性,并用定义证明之;
(2)求f(x)的值域
(3)设函数g(x)=ax-2,x∈[-2,2],若对于任意x1∈[-2,2],总存在x0∈[-2,2],使g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=(
1
ax-1
+
1
2
)x2+bx+6(a,b为常数,a>1)
,且f(lglog81000)=8,则f(lglg2)的值是______.

查看答案和解析>>

同步练习册答案