分析 首先由已知条件圆内接四边形ABCD的边长分别为AB=2,BC=6,CD=DA=4,连接对角线然后由边长求得夹角的度数,再分别求得三角形的面积,再求解即可得到答案.
解答
解:如图,连接BD,则有四边形ABCD的面积S=S△ABD+S△CDB=$\frac{1}{2}$AB•ADsinA+$\frac{1}{2}$BC•CDsinC.
∵A+C=180°,∴sinA=sinC.
∴S=$\frac{1}{2}$(AB•AD+BC•CD)sinA=$\frac{1}{2}$(2×6+2×4)sinA=10sinA.
∴由余弦定理,在△ABD中可得:BD2=AB2+AD2-2AB•ADcosA=22+62-2×2×6cosA=40-24cosA,
在△CDB中可得:BD2=CB2+CD2-2CB•CDcosC=22+42-2×2×4cosC=20-16cosC,
∴40-24cosA=20-16cosC,
∵cosC=-cosA,
∴40cosA=20,cosA=$\frac{1}{2}$,
∴A=60°,
∴S=10sin60°=5$\sqrt{3}$..
点评 本小题考查三角函数的基础知识以及运用三角形面积公式及余弦定理解三角形的方法,考查运用知识分析问题、解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $(-∞,\frac{1}{2})$ | B. | (-∞,0) | C. | $(0,\frac{1}{2})$ | D. | $(\frac{1}{2},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com