精英家教网 > 高中数学 > 题目详情

【题目】已知 的展开式中,前三项系数成等差数列.
(1)求第三项的二项式系数及项的系数;
(2)求含x项的系数.

【答案】
(1)解:∵前三项系数1, 成等差数列.

∴2 =1+ ,即n2﹣9n+8=0.∴n=8或n=1(舍).

通项公式Tr+1= 8r =2r ,r=0,1,…,8.

∴第三项的二项式系数为 =28.第三项系数为 =7


(2)解:令4﹣ r=1,得r=4,∴含x项的系数为 =
【解析】(1)根据前三项系数1, 成等差数列,求得n的值,再利用二项式展开式的通项公式,求得第三项的二项式系数及项的系数.(2)利用二项式展开式的通项公式求得含x项的系数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解答
(1)求证:函数y=x+ 有如下性质:如果常数a>0,那么该函数在(0, ]上是减函数,在[ ,+∞)上是增函数.
(2)若f(x)= ,x∈[0,1],利用上述性质,求函数f(x)的值域;
(3)对于(2)中的函数f(x)和函数g(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线平面,直线平面,给出下列命题:

,则;   ,则

,则;   ,则.

其中正确命题的序号是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E: (a>b>0),其长轴长是短轴长的 倍,过焦点且垂直于x轴的直线被椭圆截得的弦长为2
(1)求椭圆E的方程;
(2)设过右焦点F2且与x轴不垂直的直线l交椭圆E于P,Q两点,在线段OF2(O为坐标原点)上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图运行程序后,输出的结果是31,则判断框中的整数H=(

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是递增的等差数列,a1 , a2是方程x2﹣4x+3=0的两根.
(1)求数列{an}的通项公式;
(2)求数列{ }的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,
且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1

(1)求证:AB∥平面PCD;
(2)求证:BC⊥平面PAC;
(3)若M是PC的中点,求三棱锥C﹣MAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|kx2﹣2x﹣1=0}只有一个元素,则实数k的取值集合为(
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)= ﹣k(x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案