精英家教网 > 高中数学 > 题目详情
直线3x+4y-9=0与圆x2+(y-1)2=1的位置关系是(  )
A、相离
B、相切
C、直线与圆相交且过圆心
D、直线与圆相交但不过圆心
考点:直线与圆的位置关系
专题:直线与圆
分析:求出圆心,根据直线和位置的关系进行判断即可.
解答: 解:圆心坐标为(0,1),半径R=1,
|0+4-9|
32+42
=
5
5
=1=R

即直线和圆相切,
故选:B
点评:本题主要考查直线和圆的位置关系的判断,利用圆心到直线的距离和半径之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan(π-a)=3,则
sin(
2
-a)+2sin(a-π)
2cos(π-a)-cos(a-
π
2
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 f(α)=
cos(
π
2
-α)sin(π-α)
sin(
π
2
-α)sin(2π+α)

(1)化简f(α);     
(2)若f(α)=1,求
3sinα-2cosα
2sinα-cosα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某休闲农庄有一块长方形鱼塘ABCD,AB=50米,BC=25
3
米,为了便于游客休闲散步,该农庄决定在鱼塘内建三条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且∠EOF=90°.
(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意的实数k,直线y=kx+2与圆x2+y2=5的位置关系一定是(  )
A、相离
B、相切
C、相交但直线不过圆心
D、相交且直线过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:

求圆心在直线y=-2x上,并且经过点A(0,1),与直线x+y=1相切的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

以点A(-3,0),B(3,-2),C(-1,2)为顶点的三角形是(  )
A、等腰三角形
B、等边三角形
C、直角三角形
D、以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在公比不等于1的等比数列{an}中,a2,a8,a5成等差数列.
(1)求证:S4,S10,S7成等差数列;
(2)若a1=1,数列{|an3|}的前项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
3
-x)=
3
5
,则cos(
6
-x)=
 

查看答案和解析>>

同步练习册答案