精英家教网 > 高中数学 > 题目详情
已知各项为正数的数列{an}中,a1=1,对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,公比为qk;a2k,a2k+1,a2k+2成等差数列,公差为dk,且d1=2.
(1)求a2的值;
(2)设bk=
1
qk-1
,证明:数列{bk}为等差数列;
(3)求数列{dk}的前k项和Dk
考点:数列的求和,等差关系的确定
专题:综合题,等差数列与等比数列
分析:(1)令k=1,由三个数成等差(比)数列的性质,得到方程组,根据条件解出a2,注意舍去负值;
(2)根据a2k,a2k+1,a2k+2成等差数列推出①2a2k+1=a2k+a2k+2,由a2k-1,a2k,a2k+1成等比数列,且公比为qk,得a2k+1=a2kqk,再由a2k+1,a2k+2,a2k+3成等比数列,公比为qk+1,得a2k+2=a2kqkqk+1,将它们代入①化简整理注意两边减1,对照结论即可得证;
(3)根据(2)求出qk=
k+1
k
,由a2k-1,a2k,a2k+1成等比数列,公比为qk,得到
a2k+1
a2k-1
=(
k+1
k
)2

再应用累乘法求出a2k+1,由a2k+1=a2kqk,得到a2k,由dk=a2k+1-a2k,求出dk,再运用等差数列求和公式,求出Dk
解答: 解:(1)由题意令k=1,则a1,a2,a3成等比数列,a2,a3,a4成等差数列,且d1=2,
a22=a1a3
a3=a2+2
,由a1=1,则a22=a2+2
∴a2=2或a2=-1,
∵an>0,∴a2=2;
(2)证明:∵a2k-1,a2k,a2k+1成公比为qk的等比数列,a2k+1,a2k+2,a2k+3成公比为qk+1的等比数列
∴a2k+1=a2kqk,a2k+2=a2k+1qk+1
又∵a2k,a2k+1,a2k+2成等差数列,
∴2a2k+1=a2k+a2k+2
2a2k+1=
a2k+1
qk
+a2k+1qk+1
2=
1
qk
+qk+1

qk-1
qk
=qk+1-1

1
qk+1-1
=
qk
qk-1
=1+
1
qk-1
1
qk+1-1
-
1
qk-1
=1
,即bk+1-bk=1.
∴数列数列{bk}为公差d=1的等差数列,且b1=
1
q1-1
=1

∴bk=b1+(k-1)•1=k;
(3)当b1=1时,由(2)得bk=
1
qk-1
=k,qk=
k+1
k

a2k+1
a2k-1
=(
k+1
k
)2

a2k+1=
a2k+1
a2k-1
a2k-1
a2k-3
a3
a1
a1=(
k+1
k
)2•(
k
k-1
)2…(
2
1
)2•1=(k+1)2

a2k=
a2k+1
qk
=k(k+1)

∴dk=a2k+1-a2k=(k+1)2-k(k+1)=k+1,
即{dk}成首项为2,公差为1的等差数列,
∴Dk=
k(k+3)
2
点评:本题主要考查等差数列和等比数列的性质,以及通项公式与求和公式,考查通过构造数列解决相关问题的能力,考查推理证明能力,是一道数列综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数z满足iz=2,其中i为虚数单位,则z的虚部为(  )
A、-2B、2C、-2iD、2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
1
2
,且α∈(0,π).
(1)求
cos2α
sin(α+
π
4
)
的值;
(2)求1+
sin2α
sin(α+
π
4
)
的值;
(3)求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知常数a∈R,解关于x的不等式ax2-2x+a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<α<β<π,且cos(α-β)=
4
5
,tanβ=
4
3
,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=5,an+1=
8an-12
3an-4
,n∈N*,bn=
1
an-2

(Ⅰ)求证:数列{bn}为等差数列,并求其通项公式;
(Ⅱ)已知以数列{bn}的公差为周期的函数f(x)=Asin(ωx+φ)[A>0,ω>0,φ∈(0,π)]在区间[0,
1
2
]上单调递减,求φ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-2,-3,-4},B={-2,2m},且满足B⊆A,求实数m的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知顶点在坐标原点,焦点在x轴正半轴上的抛物线有一个内接直角三角形,该直角三角形的直角顶点在原点,斜边长是5
3
,一条直角边所在直线的方程是y=2x,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线x-y-1=0与曲线x2y-ax+a=0相切,则实数a为
 

查看答案和解析>>

同步练习册答案