精英家教网 > 高中数学 > 题目详情
10.设集合U={1,2,3,4},A={1,2},B={2,4},则∁U(A∪B)(  )
A.{1,2,4}B.{1,4}C.{2}D.{3}

分析 利用集合的并集和补集的定义求解.

解答 解:∵集合U={1,2,3,4},A={1,2},B={2,4},
∴A∪B={1,2,4},
CU(A∪B)={3}.
故选:D.

点评 本题考查集合的交、并、补集的混合运算,是基础题,解题时要认真审题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在△ABC中,内角A、B、C所对的边分别为a,b,c,其外接圆半径为6,$\frac{b}{1-cosB}$=24,$sinA+sinC=\frac{4}{3}$
(1)求cosB;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这5个球随机放入这5个盒子内,要求每个盒子内放一个球,记“恰有两个球的编号与盒子的编号相同”为事件A,则事件A发生的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,角A,B,C所对的边长分别为a,b,c,已知a-b=2,c=4,sinA=2sinB,则△ABC的面积为$\sqrt{15}$,sin(2A-B)=$\frac{7\sqrt{15}}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知i是虚数单位,求复数z=$\frac{1+2i}{1+i}$的虚部.
(2)设函数f(x)=$\frac{1}{3}$ax3+2ax2+(1-2a)x,a,b∈R,a≠0,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a>0且a≠1,b∈R,则“a>1,0<b<1”是“函数y=loga(x+b),(x>-b)的图象同时经过第一、三、四象限”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{1}{x}$+$\sqrt{x+4}$的定义域为(  )
A.[-4,+∞)B.(-4,0)∪(0,+∞)C.(-4,+∞)D.[-4,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设a=1$\frac{1}{2}$,b=13$\frac{1}{2}$,求$\frac{({a}^{\frac{1}{2}}+{b}^{\frac{1}{2}})^{-1}-({a}^{\frac{1}{2}}-{b}^{\frac{1}{2}})^{-1}}{({a}^{\frac{1}{2}}+{b}^{\frac{1}{2}})^{-1}+({a}^{\frac{1}{2}}-{b}^{\frac{1}{2}})^{-1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}满足a1=1,an+1=$\frac{{2}^{n+1}{a}_{n}}{{a}_{n}+{2}^{n}}$(n∈N+
(1)证明:数列{$\frac{{2}^{n}}{{a}_{n}}$}是等差数列,求它的前n项和Sn及an
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

同步练习册答案