精英家教网 > 高中数学 > 题目详情

已知a∈R,函数f(x)=x2(|x|-a),求f(x)在区间[-2,2]上的最大值.

解:∵f(x)=|x|3-a|x|2
∴f(x)在[-2,2]上是偶函数,则只需研究x∈[0,2],f(x)=x3-ax2的最大值.
∵f'(x)=3x2-2ax,令f'(x)=0得x=0或
即a≤0时,f(x)在[0,2]上单调递增,
∴f(x)max=f(2)=8-4a,
即a≥3时,f(x)在[0,2]上单调递减,
∴f(x)max=f(0)=0,
,即0<a<3时,f(x)在[0,]上单调递减,f(x)在[,2]上单调递增,


分析:利用函数是偶函数,只需研究当xx∈[0,2]的最大值即可,然后利用导数求函数的最值.
点评:本题主要考查函数奇偶性的应用,判断函数是偶函数是解决本题的关键,然后利用导数进行求最值,注意要进行分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函数g(x)=f′(x)是偶函数,求f(x)的极大值和极小值;
(Ⅱ)如果函数f(x)是(-∞,?+∞)上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=ln(x+1)-x2+ax+2.
(1)若函数f(x)在[1,+∞)上为减函数,求实数a的取值范围;
(2)令a=-1,b∈R,已知函数g(x)=b+2bx-x2.若对任意x1∈(-1,+∞),总存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e为自然对数的底).
(1)当a>0时,求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在求出x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知a∈R,函数 f(x)=x3+ax2+(a-3)x的导函数是偶函数,则曲线y=f(x)在原点处的切线方程为
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

查看答案和解析>>

同步练习册答案