精英家教网 > 高中数学 > 题目详情

【题目】在三棱柱中,均为等边三角形,OBC的中点.

1)证明:平面平面ABC

2)在棱上确定一点M,使得二面角的大小为.

【答案】1)见解析(2

【解析】

1)要证明平面平面ABC,只需证明平面ABC即可.因为为等边三角形,所以再根据勾股定理证明,即可证出平面ABC

2)以OAOB所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系O-xyz,根据向量共线定理用参数表示出点的坐标,分别求出平面和平面的法向量,由二面角的向量公式列式,即可求出参数,确定的位置.

1)因为均为等边三角形,OBC的中点,

所以.

中,

从而有,所以

又因为,所以平面ABC

又因为平面,所以平面平面ABC

2)以OAOB所在直线分别为x轴,y轴,z

建立如图所示的空间直角坐标系O-xyz

,由(1)可知,平面

是平面的一个法向量,

,其中.

所以

设平面的法向量为

,则

所以

解得.

即存在一点M,且时,二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:

品牌

首次出现故

障时间x(年)

0<x≤1

1<x≤2

x>2

0<x≤2

x>2

轿车数量(辆)

2

3

45

5

45

每辆利润

(万元)

1

2

3

1.8

2.9

将频率视为概率,解答下列问题:

(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率.

(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1X2的分布列.

(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个数列的各项是12,首项是1,且在第1和第1之间有2,即12122122221222222221…,则此数列的前2017项的和______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的双曲线的标准方程:

(1)一条渐近线方程为,且与椭圆有相同的焦点;

(2)经过点,且与双曲线有共同的渐近线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆锥的顶点为S,底面圆O的两条直径分别为AB和CD,且AB⊥CD,若平面平面.现有以下四个结论:

①AD∥平面SBC;

③若E是底面圆周上的动点,则△SAE的最大面积等于△SAB的面积;

与平面SCD所成的角为45°.

其中正确结论的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半径为20米,圆心角的扇形展示台,展示台分成了四个区域:三角形,弓形,扇形和扇形(其中.某次菊花展依次在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:泥金香50/,紫龙卧雪30/,朱砂红霜40/.

1)设,试建立日效益总量关于的函数关系式;

2)试探求为何值时,日效益总量达到最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班对一次实验成绩进行分析,利用随机数表法抽取样本时,先将50个同学按010203…50进行编号,然后从随机数表第9行第11列的数开始向右读,则选出的第6个个体是( )(注:表为随机数表的第8行和第9行)

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

A.00B.13C.42D.44

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设为不同的两点,直线的方程为,设,其中均为实数.下列四个说法中:

①存在实数,使点在直线上;

②若,则过两点的直线与直线重合;

③若,则直线经过线段的中点;

④若,则点在直线的同侧,且直线与线段的延长线相交.

所有结论正确的说法的序号是______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

同步练习册答案