精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x+
12x

(1)判断函数f(x)的奇偶性;
(2)利用单调性定义证明函数f(x)在区间(0,+∞)上为增函数.
分析:(1)根据函数奇偶性的定义进行判断即可.
(2)根据函数单调性的定义进行证明即可.
解答:解:(1)∵f(x)=2x+
1
2x
=2x+2-x
∴f(-x)=2x+2-x=f(x),
∴函数f(x)为偶函数;
(2)利用单调性定义证明函数f(x)在区间(0,+∞)上为增函数.
设0<x1<x2
f(x1)-f(x2)=2x1+
1
2x1
-(2x2+
1
2x2
)
=2x1-2x2+
2x2-2x1
2x1?2x2
=(2x1-2x2)
2x1?2x2-1
2x1?2x2

∵0<x1<x2
2x1-2x20
即f(x1)-f(x2)<0,
∴f(x1)<f(x2),
即函数f(x)在区间(0,+∞)上为增函数.
点评:本题主要考查函数奇偶性和单调性的应用,根据函数奇偶性和单调性的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案