精英家教网 > 高中数学 > 题目详情
解关于x的不等式
(a-1)x-a-1
2x-1
≤0(其中a≠-3).
考点:其他不等式的解法
专题:不等式的解法及应用
分析:由题意针对a分类讨论,结合分式不等式的解法可得.
解答: 解:当a=1时,原不等式可化为
-2
2x-1
≤0,即2x-1>0解得x>
1
2
,故解集为{x|x>
1
2
};
当a>1时,
1
2
a+1
a-1
,不等式的解集为{x|
1
2
<x≤
a+1
a-1
};
当a<-3时,
1
2
a+1
a-1
,不等式的解集为{x|x<
1
2
或x≥
a+1
a-1
};
当-3<x<1时,
1
2
a+1
a-1
,不等式的解集为{x|x≤
a+1
a-1
或x>
1
2
}
点评:本题考查含参数的分式不等式的解法,分类讨论是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30)20.05
合计M1
(1)求出表中M,p及图中a的值;
(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[20,25)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=|
b
|=1,且
a
b
=0,则cos<2
a
+
b
b
>=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的等比数列{an}满足a2a3=a4,a1+a2+a3=21.
(1)求数列{an}的通项公式;
(2)设bn=1+log2an(n∈N)bn=1+log2an(n∈N),求数列{
1
bnbn+1
}
的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

下列那个图形可以与空间平行六面体进行类比(  )
A、三角形B、梯形
C、平行四边形D、矩形

查看答案和解析>>

科目:高中数学 来源: 题型:

下列变形不正确的是(  )
A、由
x
2
=0,得x=0
B、由3x=-12,得x=-4
C、由2x=3,得x=
3
2
D、由
3
4
x=2,得x=
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(0,2),抛物线y2=4x上的动点P到y轴的距离为d,则d+|MP|的最小值为(  )
A、
5
+1
B、
5
-1
C、
5
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若正数x,y满足x+y=1,且
1
x
+
a
y
≥4对任意x,y∈(0,1)恒成立,则正数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,-1,3),B(2,1,3),则|AB|等于
 

查看答案和解析>>

同步练习册答案