精英家教网 > 高中数学 > 题目详情
9.过三点A(1,0),B(0,$\sqrt{3}$),C(2,$\sqrt{3}$)则△ABC外接圆的圆心到原点的距离为(  )
A.$\frac{5}{3}$B.$\frac{\sqrt{21}}{3}$C.$\frac{{2\sqrt{5}}}{3}$D.$\frac{4}{3}$

分析 利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.

解答 解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,
可设圆心P(1,p),由PA=PB得
|p|=$\sqrt{1{+(p-\sqrt{3})}^{2}}$,
得p=$\frac{2\sqrt{3}}{3}$
圆心坐标为P(1,$\frac{2\sqrt{3}}{3}$),
所以圆心到原点的距离|OP|=$\sqrt{1+(\frac{2\sqrt{3}}{3})^{2}}$=$\sqrt{1+\frac{12}{9}}$=$\frac{\sqrt{21}}{3}$,
故选:B

点评 本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是{a|a<0或a>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知M(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一点,F1,F2是C的左、右两个焦点,若$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$<0,则y0的取值范围是(  )
A.$(-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})$B.$(-\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{6})$C.$(-\frac{2\sqrt{2}}{3},\frac{2\sqrt{2}}{3})$D.$(-\frac{2\sqrt{3}}{3},\frac{2\sqrt{3}}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=100$\sqrt{6}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.
求证:AC=2AD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设变量x,y满足约束条件$\left\{\begin{array}{l}x+2≥0\\ x-y+3≥0\\ 2x+y-3≤0\end{array}\right.$,则目标函数z=x+6y的最大值为(  )
A.3B.4C.18D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是(  )
A.$\frac{{|{BF}|-1}}{{|{AF}|-1}}$B.$\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$C.$\frac{{|{BF}|+1}}{{|{AF}|+1}}$D.$\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知AB=2,AC=3,A=60°.
(1)求BC的长;
(2)求sin2C的值.

查看答案和解析>>

同步练习册答案