精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t为参数),直线l与x,y轴的正半轴分别交于A,B两点.
(1)求△OAB内切圆C的普通方程,并化为参数方程及极坐标方程;
(2)设P是圆C上任一点,求|PO|2+|PA|2+|PB|2的取值范围.

分析 (1)把参数方程化为普通方程,求得A、B的坐标,求得△OAB内切圆C的普通方程,再把它化为极坐标方程.
(2)设P(x,y)是圆C上任一点,则利用参数方程化简|PO|2+|PA|2+|PB|2 为 20-2sinθ,再利用正弦函数的值域求得它的范围.

解答 解:(1)把直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t为参数),化为参数方程为4x+3y-12=0,
它与x,y轴的正半轴分别交于A(3,0),B(0,4)两点,a>0.
设△OAB内切圆C的圆心为C(a,a),由a=$\frac{|4a+3a-12|}{\sqrt{16+9}}$,求得a=6(舍去),或 a=1,
故△OAB内切圆C的普通方程为(x-1)2+(y-1)2=1,化为参数方程为$\left\{\begin{array}{l}{x=1+cosθ}\\{y=1+sinθ}\end{array}\right.$ (θ为参数);
化为极坐标方程为(ρcosθ-1)2+(ρsinθ-1)2=1.
(2)设P(x,y)是圆C上任一点,
则|PO|2+|PA|2+|PB|2 =x2+y2+(x-3)2+y2+x2+(y-4)2=3x2+3y2-6x-8y+25
=3(1+cosθ)2+3(1+sinθ)2-6(1+cosθ)-8(1+sinθ)+25=20-2sinθ,
由于sinθ∈[-1,1],∴20-2sinθ∈[18,22],即|PO|2+|PA|2+|PB|2的取值范围为[18,22].

点评 本题主要考查普通方程、参数方程、极坐标方程间的互化,正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设Sn为等差数列{an}的前n项和,若S8=4a3,则a6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=$\frac{1-cosx}{sinx}$为(  )
A.奇函数B.偶函数
C.既不是奇函数,也不是偶函数D.既是奇函数,也是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个几何体的三视图如图所示,设该几何体的体积为V,则3(V+$\frac{2π}{3}$-16)的值为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知某几何体的三视图如图所示,则它的表面积为(  )
A.15πB.16πC.17πD.18π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.己知函数f(x)=2ln3x+8x,则$\underset{lim}{△x→∞}$$\frac{f(1+2△x)-f(1)}{△x}$的值为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,∠B=90°,AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F.
(1)证明:EB=EC;
(2)证明:AD•AC=AE•AF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AD∥BC,过A、C、D三点的圆O与直线AB相切,且圆O过线段BC的中点E.
(1)求证:∠B=∠ACD;
(2)求$\frac{AC}{CD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.5个人排成一排,其中甲与乙必须相邻,而丙与丁不能相邻,则不同的排法种数有24种.

查看答案和解析>>

同步练习册答案