精英家教网 > 高中数学 > 题目详情
10.函数y=$\frac{1-cosx}{sinx}$为(  )
A.奇函数B.偶函数
C.既不是奇函数,也不是偶函数D.既是奇函数,也是偶函数

分析 先看函数的定义域是否关于原点对称,再看f(x)与f(-x)的关系,从而根据函数的奇偶性的定义得出结论.

解答 解:令函数y=f(x)=$\frac{1-cosx}{sinx}$,它的定义域为{x|x≠kπ,k∈Z},关于原点对称,
再根据f(-x)=$\frac{1-cos(-x)}{sin(-x)}$=$\frac{1-cosx}{-sinx}$=-f(x),
可得它为奇函数,
故选:A.

点评 本题主要考查函数的奇偶性的判断方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.cos40°+cos60°+cos80°+cos160°的值是(  )
A.0B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.输出下列四个命题:
①回归直线恒过样本点的中心($\overline{x}$,$\overline{y}$);
②回归直线就是散点图中经过样本数据点最多的那条直线;
③残差平方和越小的模型,模型拟合的效果越好;
④在线性回归分析中,如果两个变量的相关性越强,则相关系数就越接近于1.
其中真命题的个数为 (  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某种饮料每箱装4听,如果其中有一听不合格,从一箱中随机抽取两听,则抽到不合格品的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)部分图象如图所示:
(1)写出函数f(x)的解析式;
(2)若存在x∈[0,$\frac{π}{2}$]使得f(x)+4cos2x+m=0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点F1、F2依次为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a,b>0)的左右焦点,|F1F2|=6,B1(0,-b),B2(0,b).
(1)若$a=\sqrt{5}$,以$\overrightarrow d=(3,-4)$为方向向量的直线l经过B1,求F2到l的距离;
(2)若双曲线C上存在点P,使得$\overrightarrow{P{B_1}}•\overrightarrow{P{B_2}}=-2$,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,△PAC是等边三角形,已知BC=2AC=4,AB=2$\sqrt{5}$.
(Ⅰ)求证:平面PAC⊥平面CBP;
(Ⅱ)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t为参数),直线l与x,y轴的正半轴分别交于A,B两点.
(1)求△OAB内切圆C的普通方程,并化为参数方程及极坐标方程;
(2)设P是圆C上任一点,求|PO|2+|PA|2+|PB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.存在α∈(0,$\frac{π}{2}$),使sinα+cosα=$\frac{1}{3}$
B.y=tanx在其定义域内为增函数
C.y=cos2x+sin($\frac{π}{2}$-x)既有最大、最小值,又是偶函数
D.y=sin|2x+$\frac{π}{6}$|的最小正周期为π

查看答案和解析>>

同步练习册答案