| A. | 存在α∈(0,$\frac{π}{2}$),使sinα+cosα=$\frac{1}{3}$ | |
| B. | y=tanx在其定义域内为增函数 | |
| C. | y=cos2x+sin($\frac{π}{2}$-x)既有最大、最小值,又是偶函数 | |
| D. | y=sin|2x+$\frac{π}{6}$|的最小正周期为π |
分析 用分析法可得A不正确.通过举反例来可得B不正确.化简函数的解析式为2(cosx+$\frac{1}{4}$)2-$\frac{9}{8}$,可得C正确.y=sin|2x+$\frac{π}{6}$|不是周期函数,故D不正确.
解答 解:要使使sinα+cosα=$\frac{1}{3}$,只要 1+2sinαcosα=$\frac{1}{9}$,即 sinαcosα=-$\frac{4}{9}$,
故α不可能满足α∈(0,$\frac{π}{2}$),故A不正确.
由于当x=0 时,tanx=0,当 x=π 时,也有tanx=0,π>0,故y=tanx在其定义域内不是增函数,故B不正确.
由于y=cos2x+sin($\frac{π}{2}$-x)=2cos2x-1+cosx=2(cosx+$\frac{1}{4}$)2-$\frac{9}{8}$,由于cosx为偶函数,故函数y为偶函数.
当cosx=1时,y取得最大值为 $\frac{25}{8}$,当cosx=-$\frac{1}{4}$时,y取得最小值为-$\frac{9}{8}$,故C正确.
由于y=sin|2x+$\frac{π}{6}$|不是周期函数,故D不正确,
故选:C.
点评 本题主要考查三角函数的图象和性质,通过举反例来说明某个命题不正确,是一种简单有效的方法,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com